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This report discusses techniques for the measurement of cross-

correlation and cross-spectral density functions and errors in these

measurements. Analog, digital and hybrid data reduction techniques

presently in use are described. In addition, those techniques used in

the radar and communication fields that appear useful for the specific

application of interest (dynamic pressure measurements) are detailed.

The error formulae cover both statistical uncertainty errors

from the analysis of records with finite bandwidth and finite duration,

and hardware related errors. Particular emphasis is placed on phase

e:rrors throughout the entire measuring system from the transducer

through the analyzer. Both static and dynamic phase errors are

covered. In addition, errors from analyzer parameters (filter band-

width, scan rate, etc.), extraneous additive noise, finite transducer size

and magnetic tape recorder velocity nonuniformities are discussed.
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I. INTRODUCTION

The purpose of this study is to investigate those factors contributing

to inaccuracies in the measurement of cross-correlation and cross-spectral

density functions of stationary dynamic pressure data. All aspects of the

measurement problem from the transducer through the analyzing equipment

are considered. In addition to the basic data acquisition equipment, analog,

digital and hybrid techniques for the reduction of the data are investigated.

Further, a survey of those techniques used in the radar and communication

fields is made to determine which techniques are potentially applicable to the

meas_trement of dynamic pressure data. Formulas are developed to relate

the errors in actual hardware to the inaccuracy in the final measured cross-

spectral density and cross-correlation functions.

This study was conducted to determine the ability of commercially

available hardware to satisfy two specific requirements. In both cases

dynamic pressure data are being measured. The first set of data is obtained

from wind tunnel tests. For this type of test,50 channels of data each having

a frequency response from 30 Hz to 100 KHz is required. The second set of

data is obtained from flight tests. For this type of test,Z50 channels of 3 Hz

to 10 IKHz data are required. Although this study is conducted to specifically

satisf F the above two data channel requirements, most of the results are

presented in sufficiently general terms to be useful for vastly different

applications.

Section 2 contains a brief mathematical description of the cross-

correJation and cross-spectral density functions which are the object of this

analysis. Section 3 describes analog techniques that are used to compute

both tlhe cross-spectral density and the cross-correlation function. Section 4

describes digital techniques that are used to compute cross-correlation

and cross-spectral density functions. Section 5 contains a description of



hybrid computer techniques that are used to compute cross-correlation and

cross-spectral density functions. Section6 reports a survey of the radar

and communication fields and a description of the techniques used in those

fields which presently appear to be feasible for application to the measurement

of dynamic pressure data. Section 7 describes the measurement errors.

This section discusses those errors distributed throughout the entire measure-

ment system - transducer errors, signal conditioning errors, transmission

errors, recording errors, and data reduction errors. Both hardware related

errors and statistical uncertainty errors are covered.

Z
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2o DEFINITIONS OF CORRELA TION AND SPEC TRAL

DENSITY FUNC TIONS

Correlation, statistically speaking, is a measure of linear relation-

ship between two variables. Random variables are of primary interest when

this concept is employed, although the idea is also of use for deterministic

functions such as sinusoids.

In basic statistics, the correlation between two variables x and y is

defined as the average cross product between these two variables. That this

is a :measure of average linear relationship is easily seen from the following

simple sets of data.

Case I Case 2

x y xy x y xy

-2 -3 6 -2 0 0

-2 .-I 2 -2 0 0

-I 0 0 -I -I I

0 0 0 0 -3 0

+1 +l I +1 +3 3

+2 +3 6 +2 +1 2

_xy = 15 _xy= 6

The two individual sets of data are identical, but in Case 1 the arrangement

roughly matches small numbers with small and large numbers with large.

In the second case, the set of y data is randomly scrambled to remove this

relationship. One can clearly see the effect of the linear relation on the

size of the sum of the cross products. The amount of linear relationship in

the two above sets are further illustrated in Figure 2. 1, Notice that the x-y

relation in Case 1 is much closer to being a perfectly linear relation than

that in Case 2.



i i

-3 -Z

Case I

y_
3

2

l•

-l 1
"-I

-Z

-3

Case Z

yT

• 13"_1 e_

: : x t _ " : ; _, x
2 3 _ -3 -L -'I [ I 2 3.

• t -1

-Z

-3

Figure Z-l, Plot of Two Sets of Identical Data with Different Arrangements

The type of correlation of interest for this report arises when x and

y are variables taken as a function of time. When this is the case ,there are

two possible types of correlation functions, either a cross-correlation

function in the case of two variables x(t) and y(t), or an autocorrelation

function in the case of just one variable. That is, the time average of cross

products of the variable x with the variable y where the results are pre-

sented as a function of time delay (T). The variable y is delayed with respect

to the variable x. In statistical terms, for stationary processes, the definition

is

E[x(t) y(t + T)] = Rxy(T ) (Z. I)

where E[ ] denotes the expected (average) value of the quantity in brackets.

For convenience, it is assumed here that the mean values of these processes

are either originally zero or that they have been subtracted out. This causes

no loss in generality. Many transducers have no DC response and hence a

zero mean value time series is automatically obtained. In general, a computer
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program to compute correlation functions and spectral density functions will

do certain preprocessing of the data including subtracting out of the mean

value. Thus, by the time the data is presented to the correlation and spectrum

computation program, it will be a zero mean process.

For zero mean stationary processes, R (T) iS a covariance function
xy

which in this case is identical to the correlation function. The term covariance

arises from the fact that this quantity is a measure of the covariability of the

two variables x(t) and y(t). The term covariance is rigidly restricted to the

average cross product of two variables which have zero mean values. Thus,

if the mean is non-zero, it must be computed and subtracted out. In classical

statistics, the discussion of correlation is usually restricted to correlation

coefficients which are defined as covariances normalized to lie in the range

minus one to plus one.

In the case where x and y are continuous functions of time, Eq. (Z. 1)

is defined by an integration. The mathematical expression for the sample

estimate from finite length sample records is, for the continuous case

T-T
f

A 1
/ x(t) y(t ÷ T) dt, I TI < T < T (Z. 2)

Rxy(T) - T - T "0 -- max

where the hat "_" denotes the estimate. The quantity T defines the
max

range of time delay values from which the correlation function is computed.

For the discrete case,the expression is

N-r

^ (rAT) 1 _.
Rxy = N----_ i= 1

x(iAt) y(iAtj+ rAT) , Ir I= O, 1 ..... m (Z. 3)

where

NAt =

AT =

T , mAt=v
max

At (usually)



As one can see from an inspection of Eq. (2.3), the primary computa-

tional procedure is that of multiplying x times y and then summing over the

N observed data points of the finite length record. This procedure is then

repeated for all values of r. In practice the maximum lag number m should

almost never exceed half the value of the total number of observations N, and

usually is restricted to about one-tenth or less of the size of N. For the auto-

correlation function, one sets y(t) = x(t), and performs the identical computa-

tions.

Since the frequency composition of a random variable is often of interest,

generalized harmonic analysis of a random variable is often performed. When

one is interested in this type of an analysis, the power spectral density function

of a single record or the cross-spectral density function of a pair of records

is the parameter of interest. The power spectral density function is a charac-

terization of the random variable x{t) in terms of its variance (mean square

value) or "power" as a function of frequency. That is, the process is decomposed

into its various frequency components in order to determine the amount of

power or variance in each frequency band. The name is then self-explanatory

in that a characterization of a given variable as a function of frequency is

termed a spectrum. The variance of a signal can be shown to be essentially

equivalent to power (up to a scale factor). By definition, the power spectral

density function is a density function since it is normalized with respect to

frequency. Hence, the term power spectral density function. The cross-

spectral density function is similar and may be thought of as the covariance

between a pair of random variables x and y as a function of frequency.

In practice, one cannot obtain values of these functions at discrete

frequency points; instead, one obtains average values within small frequency

bands of width 13 . The usual analog method of obtaining a power spectral
a

density function is to filter a record within a small bandwidth B , then square
a

and average the filter output. This gives the mean square value within the
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small frequency band

repeated for all

With the

possibly not too

can be obtained

formula termed

function and the

B centered about a frequency f. This process is
a

frequency values f which are of interest.

analogies of the spectra to variance and covariance, it is

surprising that the power and cross-spectral density function

from auto and cross-correlation functions. By a famous

the Wiener-Khinchine relation, the power spectral density

cross-spectral density function may be transformed into the

autocorrelation function and the cross-correlation function respectively. This

formula gives the spectral density function as the Fourier transform of the

corresponding correlation function. In equation form, this is

(3O

Sxy(f ) =f Rxy(T ) e -jzwfT dT , -00 < f < oo (Z. 4)
-00

too
= I R (T) [COS ZTrfT - j sin ZTrfv] d'r

Joo- xy

where j =_. This may be intuitively pictured as picking out the second

order periodicities by "beating" the correlation function with in phase and 90 °

out of phase sinusoids.

The cross-spectral density function is a complex number and hence con-

sists of two components. The real part is termed the cospectral density func-

tion and the imaginary part termed the quadrature spectral density function

denoted by G (f) and Q (f), respectively. For the ordinary power spectral
xy xy

density function, Rxy(T) is replaced by Rxx(T). Then Sxx(f) is a real-valued

funct![on since Rxx(T) is an even function and hence the sine portion of the

Fourier transform is zero. The importance of Eq° (2.4} Lies in the fact that if

the power spectral density function is of interest in a given application, it may

also be obtained via the correlation function with the additional computational

step of a Fourier transform. A broad discussion of these matters and other

basic requirements for measuring and analyzing random data appear in

Reference I.



3. ANALOG DATA REDUCTION TECHNIQUES

This section contains a summary of the techniques used in analog

instruments for the computation of correlation functions and cross-spectral

density functions. In addition to describing the basic computational tech-

niques, various practical methods of implementing the required functional

operations are discussed.

3.1 CORRELATORS

Since the equation for computing a correlation function is as follows,

1]+Rxy(T ) = lira .._ x(t) y(t + v) dt
T-*co -T

(3. l)

one of the two signals under analysis must be delayed with respect to the

other and then the two signals must be multiplied and their product inte-

grated. Since one really only estimates the correlation function, the limit-

ing process is dropped. The uncertainty errors associated with finite

record lengths andbandwidths are described in Section 7. Ablock diagram

of a typical analog correlator is shown in Figure 3-1.

XJi

q TimY Dela_

Multiplier _[ Integrator
Normalizing R (T)

Circuit xy

Figure 3-1. Block Diagram of an Analog. Correlation Analyzer
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Two basic versions of this type of correlator are possible. The primary

difference is in the manner of obtaining Rxy(T) for various values of time

delay (_'). In the first, and most common type, the value of time delay is

scanned across the time delay range of interest. Essentially, a complete

analysis is performed for one value of T and then a new value of _" is set

into the delay l_echanism and the data is repeated and so on until the com-

plete time delay range of interest is analyzed. The time delay can be

stepped in discrete increments or can be continuously swept.

The second basic type of analog correlation analyzer consists of a

number of parallel circuits. A separate circuit is required for each value

of 7. See Figure 3-2.

X

,

Time Delays

D

-Q

-D
Figure 3- 2

Multipliers Integrators

i I_o.ol I_o.ol I_:.

Normalizing

Circuits

!_o,!-- A

Rxy (T1)

2 Rxy(T2)

m

Block Diagram of a Real Time Correlation Analyzer

These parallel analyzers are frequently termed real time analyzers since

they have the capability to perform a complete analysis as the data is being

generated. No storage of the input data is required.

9



Unfortunately, two of the three operations that must be performed on

the data to compute correlation functions are difficult to perform with elec-

trical analog equipment. These operations are the time delay and the multi-

plication operations.

3. 1. 1 Time Delay Mechanisms

The most successful of the analog time delays are based on mechanical

devices. For example, if both data channels are recorded on separate tracks

of a magnetic drum, the time; delay can be obtained by moving the position

of one reproduce head relative to the other (Reference 2,). See Figure 3-3.

Or, in a similar scheme, only one data channelis recorded on the magnetic

drum. This is the channel to be delayed. The position of the reproduce

head is varied to obtain the desired time delay. Normally, separate record

and reproduce heads are used so that there is some minimum separation re-

quired between the two magnetic heads because of the mechanical interference.

Since this separation represents a limitation on the minimum time delay value,

it is necessary to delay the other data channel by a fixed amount equal to or

greater than the minimum delay value of the drum.

Record No.

Record No. i

Drum Rotat

• eproduce No.

Reproduce No. 1

Fixed Heads

Moveable Head

2

Figure 3-3. Magnetic Drum Variable Time Delay Mechanisms
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Another version of the magnetic drum delay mechanism consists of

one recording track with fixed record and reproduce heads. The variation

in time delay is obtained by varying the rotational speed of the drum (Ref-

erence 3}. A,_ in the preceding case, a fixed delay is required in the other

data channel to compensate for the delay associated with the physical sep-

aration of the record and reproduce heads.

All of the above schemes for creating a time delay can also be imple-

mented by using a magnetic tape recorder in place of the drum. The main

advantage of using tape is that magnetic tape is in contact with the magnetic

heads; hence, the mechanical mechanisms required, although complex, are

not as complex as those required with a drum where the head must be main-

tained very close to but not in contact with the magnetic surface. The

primary disadvantage of using magnetic tape is that its velocity cannot be

controlled as accurately as that of a drum. For example, temperature,

humidity, and tension variations all cause the tape to stretch in ranges

whe:ce these effects would be negligible for a drum.

One magnetic tape recorder that has been specifically designed to pro-

vide time delays has two separate capstans and a storage bin (Reference 4).

The signals to be correlated are recorded on separate tracks of the tape.

To provide a fixed value of time delay, one capstan is engaged and tape is

dumped into the storage bin until the desired vahe of time delay is obtained.

Theu the second capstan is engaged and run at the same speed as the first

capstan. In this manner a fixed time delay is created. If it is desired to

continuously vary the time delay, the second capstan is run at a slightly

different speed than the first. The excess tape generated by this speed

differentialis temporarily stored in the storage bin. Two separate record/

reproduce head stacks are required to obtain zero time delay.

Another mechanism that has been successfully used to generate time

delays operates on the principle of overlaying permanent records of the time

11



histories of the two signals to be correlated. To obtain a time delay one

record is physically displaced along the time axis relative to the other.

This technique is used in optical correlators (Reference 5 ). Here the data

is recorded in the form of intensity modulation on photographic film, each

signal to be correlated on a separate film. The same scan rate (inches/sec)

of the light trace is used in all traces so that when the films are overlayed

such that the starting points of both records coincide, the correlation func-

tion value for v = 0 can be generated. By moving one film relative to the

other x inches a time delay of x divided by the scan rate is generated.

This same technique is also used in a magnetic correlator (Reference 6}

The two signals to be correlated are recorded on separate loops of magnetic

tape. One loop is positioned with the oxide side of the tape against one side

of a long flux sensitive reproduce head. The other tape loop is positioned

with its oxide side against the other side of the flux sensitive head. See

Figure 3-4. Displacement of the second loop along the magnetic head rela-

tive to the first loop creates the time delay.

Loop No. 1 - Moveable

Flux Sensitive

Reproduce Head

Loop No. Z - Stationary

Figure 3-4. Magnetic Loop Delay Technique
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Electronic delay lines have not found much usage as a source of vari-

able delay for acoustic data correlators. These devices usually act as low-

pass or bandpass filters so that direct application of a delay line to a signal

extending from 3 Hz to 100 KHz is not too practical for moderate values of

delay (0. 1 secl. Modulation of a higher frequency carrier is necessary to

obtain a 100 KHz bandwidth. Also it is usually necessary to tap the delay

line to obtain the different values of delay. Providing even a moderate

number of taps (,"200) and correcting for the difference in insertion loss

at each of the taps, though feasible, is a bit unwieldy and the end result is

one that does not have the operational flexibility of some of the other delay

techniques.

3. 1. 2 Multiplication Mechanisms

A large number of electronic analog multiplication tec:hniques have

been devised over the years. For a discussion of most of these, see Ref-

erence 7 . The techniques can be separated into general categories of

special electronic tubes, special modulation formats, quarter square multi-

pliers, Hall effect multipliers, time-division multipliers and logarithmic

multipliers. The latter four techniques have most frequently been applied

to acoustic type data analyzers.

Logarithmic multipliers simply operate on the principle

log xy = log x + log y (3. z)

Each data channel is applied to a separate log converter, summed and the

antilog is taken as shown in Figure 3-5.

13



X '

y , ,, ,,

I Converter I
Log

I

Log Converter

!

!

!

Figure 3-5. Logarithmic Multiplier
!

In general, this type of multiplier is not too satisfactory for correlation

analysis since it operates in one quadrant only (x and y must both be posi-

tive).

The Hall effect multipliers are constructed from semiconductor ma-

terial. The output of this device is proportioned to the product of the cur-

rent applied to the semiconductor and the flux density applied in a per-

pendicular plane.

II

II
I

I

RhI B
V - x y (3.3)

z t

!

!
where !

V = the output voltage
z

R h = the Hall constant

I = a current proportional to x
x

!

!
B = a flux density proportional to y

Y

t = the thickness of the semiconductor material

!

!
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I Figure 3-6 illustrates the basic operation of a Hall effect multiplier.

I Voltage to Cur:rent _ /-

. Converter . [I /
I I_ _ /;:-Z/L_-z--- _--Y/]

I _--__ ..... _ !

Figure 3-6. Hall Effect Multiplier

These devices presently have high frequency limitations on the order of

I0 KHz.

The quarter-square and time division multipliers are the most com-

monly used for this specific application. Quarter square multiplication is

based on the algebraic identity

,[ _ ]×y=7 (x+y)Z (x-y) Z (3.4)

A block diagram of this type of multiplier is shown in Figure 3-7.
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 x+y Isquaroix+Y2 I

ex2 Summ:og i, - _ - YJ Amplifier/_ 4 xy

y _ Sq i

Figure 3-7. Quarter Square u t'pl'er I

This technique is popular because a large amount of work has gone into the i

development of accurate squaring devices and because the other electronics

required are simply amplifiers, i
U

Time division multiplication is essentially a combination of pulse

amplitude and pulse duration modulation. One of the two signals to be multi- I

plied is passed through a pulse duration modulator to generate a series of

constant amplitude pulses whose ratio of "on" to "off" time is a function of B

the instantaneous value of the data signal. The repetition rate of the pulses

must be much higher than the highest data frequency. These pulses are then B

used to sample the second data signal. Analog samples are taken in the

second channel. (This can be thought of as pulse amplitude modulation where R

the sample rate is not constant.) The sampled signal is then integrated to

obtain the product since it is a function of the area in the sample pulses. The B
g

pulse width is proportional to the signal level in the first channel and the pulse

height is proportional to the signal level in the second channel. The following B
g

figure is a block diagram of a time division multiplier.

Switch i

_o._ _®

x Duration -- £ Integrator y

o® i
Switch

No. Z i

Figure 3-8. Time Division Multiplier
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To further illustrate the operation of this multiplier consider Fig-

ure 3-9 where the waveforms throughout Figure 3-8 are shown. As an ex-

ample, assume that x is a positive dc voltage, and y is a positive dc

voltage. The positive voltage into the PDM circuit causes the switch "on

time" (t 1) at point G to be less than the switch "off time" {t2}. Con-

versely, this positive value of x causes the switch "on time" at point @

to be greater than the switch "off time. " At point Q the value of y is

seen during the time switch No. 1 is operated and is zero the rest of the

time. At point @ the value of y is seen when switch No. 2 is on and

zero is seen when it is off. Note that when y is not seen at point @,it is

seen at point Q and vice versa. Point @ contains an inverted version

of point Q. The pulses now swing in voltage from zero to minus y in-

stead of zero to plus y. Also note that the time history at point @ is

ide:atical to that at point @ except that it has been effectively biased by

an amount of minus y . This step is taken to get a zero output when x = 0,

{t 1 = t 2 in this situation). The voltage at point Q is the sum of those

occurring at I_ and @. This swings between plus and ininus y. The

voltage at point @ is the mean value of that at point @ , adc value pro-

portional to the product xy in this example.

3. 1.3 Integration Mechanisms

Integration is easily performed with electronic circuits.

Laplace transforms (Reference 8}

Expressed in

t

f f,t,dt
0

(3.5)

where F(s) = the Laplace transform of f(t) .

17



x 0

+y
Y

0

+i _ t2-I®o

+I®o_

LffqJ II '

Lr --Lr u
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Figure 3-9. Waveforms in a Time Division Multiplier
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In practice the (l/s) transfer function is approximated by an

transfer function where _ is the reciprocal of the RC time constant of a

simple RC lowpass filter circuit. The error in the approximation can be

determined from the difference of the inverse Laplace transform of the

perfect integrator and the RC approximate integrator.

0 (3.6)

(3.7)

Ignoring the scale factor

-t/RC )
1 - e 100

1
, t > 0 (3. 8)

where e = the normalized percentage error. For example, if a 5% error

is permissible, one finds that the maximum integration time, t equals
max

O. 051 RC.

To obtain long time constants without the serious signal attenuation

attendant with simple RC integrators, operational amplifier integrators

are used. The circuit of this type of amplifier is shown in Figure 3-I0.
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R

C

e. • - eout
in

Figure 3-I0. Operational Amplifier Integrator

Ignoring parasitics in the computing elements and imperfections in the

operational amplifier, other than finite gain {A) , it can be readily shown

that the transfer function of the above circuit is

e. - 1
in s + RC{A - 1)

{3. 9}

If the magnitude of the gain is quite large compared to unity, Eq. {3.7) can

be rewritten

e. 1
in s + ARC

{3. 10}

In the time domain
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(- )e. (3. II)

Comparing Eqs. (3.7) and (3. 11), it can be seen that for a given RC product,

the operational amplifier increases the effective RC time constant by ap-

proximately the amount of the gain of the amplifier while maintaining the

signal attenuation constant, although inverting it in phase.

3. Z,

iS

CROSS-SPECTRAL DENSITY

ANALY Z ERS

The classical definition of cross-spectral density (see Reference 9)

s (f)=
xy 1 If: e-jZ_rft ] [f_T ejZTrft ]

lim _-_ x(t) dt y(t) dt
T--oo T

(3.iz)

where

S (f) = the two-sided cross-spectral density function
xy

x(t) = one of the data signals to be analyzed

y(t) = the other data signal to be analyzed

For physically realizable applications, one is interested in the one-sided,

measurable cross-spectral density function, _G y(f).

21



G (f) = 2S {f) ; f > 0
xy xy --

=0 ; f<0

{3.13}

The cross=spectral density function is frequently described in terms of its

real and imaginary components.

Gxy{f ) = Cxy{f ) _ j Qxy{f) {3.14)

T

f x(f, B, t) y(f, B, t) dt {3. 1.5}
Cxy{f ) = lira 2BT

T--co, B-*0 J- T

2B-"--_1 f_ TQxy(f) = lim x(f, B, t)y°(f, B, t) dt (3. 16)
T-- oo, B-'<) T

where

C (f} = the cospectral density
xy

O (f) = the quadrature spectral density
xy

B = the bandwidth of the analyzer filter

f = the center frequency of the analyzer filter

x{f, B, t) = one of the data signals to be analyzed after it has

been passed through a bandpass filter of width B,

and center frequency f

22

I

I

I

I

I,

I

I
I

I
I

I
I

I

I

I
I

I
I
I



I

I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

y(f, B, t) = the other data signal passed through an identical

filter

yO(f, B, t) = y(f, B, t) shifted in phase by 90 °

The cross-spectral density can also be described in polar form.

G y{f) = IGxy{f)
-j _bxy{f)

e (3. 17)

where

Gxy(f)] = the magnitude factor =_Cxgy(f)+ Q2xy (f) {3. 18)

_bxy(f ) = the phase factor = tan-1 [QxY(f)l

L%c,U
{3. 19)

The equations normally implemented in analog cross-spectral density

analyzers are those shown in Eqs. (3. 15) and (3. 16). Since one can only

estimate the values, the limiting processes are deleted.

A block diagram of a typical analog cross-spectral density analyzer

is shown in Figure 3-11.
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Y

Na r r owband

Filter

Narrowband

Filter

Figure 3-1 I.

90 ° Phase

Shifter

Multiplier Integrator Circuit _(f)

i x_
!

- _ re or ' ' -

........ _"_u_'1_9|

Block Diagram of an Analog Cross-Spectral Density Analyzer

The x(t) data signal is passed through a narrowbandbandpass filter.

The y{t) data signal is passed through an identical filter. To obtain the co-

spectral density, the two filter outputs are multiplied and integrated. To

obtain the quadrature spectrum, the filtered y(t)

phase and multiplied by the filtered x(t) signal.

integrated.

signal is shifted 90 ° in

This product is then

As with the analog correlator, two basic versions are possible. A

single channel analyzer as shown in Figure 3-11 whose center frequency

is scanned over the frequency range of interest or a real time analyzer, as

shown in Figure 3-12. with contiguous filters covering the frequency range

of interest.

3. 2. 1 90 ° Phase Shift Mechanisms

Referring to Figure 3-11, the analog computational steps required to

compute cross-spectral density are narrowband bandpass filtering, 90 °

phase shifting, multiplication, and integration. Analog techniques for per-

forming multiplication and integration were previously discussed in Sec-

tion 3. 1 and will not be repeated here. The 90 ° phase shift operation can
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be implemented with a simple RC circuit as long as the bandwidth of the

bandpass filter is much smaller than the center frequency of the filter.

The RC circuit is shown in Figure 3-13.

R R

C C eou- te.

in l l

vii , _

I

I
I

I

I

Figure 3-13. 90 ° Phase Shift Circuit for Narrowband Signals

I

I

I

The input to output relation of this circuit is given in Eq. (3.20). I

I

The phase shift as a function of frequency is

r "I

_(_o) = tan -I / -3_oRC I (3. Zl)

L1 - (_RC) z]

At ¢oRC = 1 , a 90 ° phase shift between the input and output voltages is ob-
O

tained. As long as 0.97 < ¢0RC< 1.03, there is about+l phase error, or

Z6

less, over the data passband.
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When the data is not directly filtered, the 90 ° phase shift operation

is most conveniently performed by simultaneously multiplying the data by

sine and cosine waves. This operation is explained in detail in the follow-

ing subsection on filtering mechanisms.

3. i_. 2 Filter Mechanisms

There are numerous manners in which bandpass filters can be con-

structed and a summary of all of these techniques is beyond the intent of

this section. There are however, three basic filtering techniques used in

analog cross-spectral density analyzers. The first technique is direct

application of the filter(s) to the data signal, the second technique is hetero-

dyuing of the data signal to a different frequency range, and the third tech-

nique is based on direct Fourier transformation of the data.

Direct filtering of the data has the advantage of having the simplest

circuitry (assuming the same filter is used in all three techniques). Thus,

this technique is the most reliable and stable. However, it is also the least

flexible.

The data can be heterodyned to a higher frequency for analysis with

bandpass filters or to DC for analysis with lowpass filters. This latter tech-

nic.[ue is called zero frequency IF. Heterodyning of the data to a higher fre-

quency range permits greater operational flexibility than direct filtering as

well as the use of crystal and magnetostrictive filters. This principle is

frequently used when one pair of "identical" filters is scanned through the

frequency range of interest. By using one pair of "identical" filters tuned

to a fixed frequency and slowly scanning the frequency of the local oscillator

in the heterodyne circuits, the data frequency can be scanned past the fixed

frequency filter which is effectively the same as scanning the filter through

the data frequency range.

27



Figure 3-14 is a block diagram of a typical heterodyne filter circuit

type of cross-spectral density analyzer. In most cases abalanced

modulator is used to suppress the carrier frequency. Thus,only sum and

difference frequencies (sidebands) are present on the output of the modulator.

The bandpass filters are as closely matched in characteristics as possible.

The filters work on only one of the sidebands. For example, assume that

the filters have a center frequency of 100 KHz, and the data covers a band-

width from 5 Hz to 5 KHz. By tuning the local oscillator to 99,995 Hz, the

5 Hz data component is made to appear at the center frequency of the filter.

I

y _Modulator_

I
Local

Oscillator

_ Bandpa s s tFilter

1
Frequenc_

Control

Figure 3- 14.

[Multiplie

..... j

[90°Phasel V . .

[ Shift -_-1 Multlphe

_[ HN'ol.maU_ing]

rH,ntegrat°rH Circuit i _x,<_>

 nt° rat°l--i' I

Cross-Spectral Density Analyzer Using Heterodyne Techniques
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(Positive sideband component equals 100 KHz. ) Similarly, by tuning the

local oscillator to 95 KHz, the 5 KHz data components appear at the center

frequency of the: bandpass filter. Slowly varying the frequency of the local

oscillator thus effectively causes the bandpass filter to be scanned through

the data frequency range.

The zero frequency IF filtering technique offers the advantage of

sharper filter rolloff characteristics and better phase matching for a given

cost since the actual filter only needs to have a lowpass instead of a bandpass

characteristic. This analyzer operates by simultaneously multiplying the

inputs by sine and cosine waves as shown in Figure 3-15. The frequency of

the oscillator is set to the frequency at which it is desired to filter the data.

The output of the multiplier then contains sum and difference frequencies

between the data and the oscillator frequencies. By lowpass filtering the data,

only the difference frequencies are analyzed. The apparent bandwidth of the

filte:r then extends from f0-fl to f0 +fl ' where f0 equals the oscillator fre-

quency and fl equals the cutoff frequency of the lowpass filter. The required

90 ° phase shift is performed by the simultaneous multiplication by sine and

cosine terms.

One problem that has been encountered with this type of filtering is

that a large amount of filter ripple occurs near its center frequency. This

error occurs because the analysis record durations are finite while the actual

center frequency is dc, which requires an infinite record length to avoid bias

errors. (For a more detailed discussion of this error see Section 6.) The

late.,_t versions of analyzers employing zero frequency IF filtering have added

additional circuitry that circumvents this problem.

Direct Fourier transformation of the data to obtain the cross-spectral

density is based on implementation of Eq. (3. 12}. Rewriting this equation in

terms of the estimate of the one sided cross-spectral density and replacing

the exponential with trigonometric terms one obtains
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(3. 22a)

 IIJ /= x(t) cos 2vft dt
GxY(f) - T

y(t) cos 2wft dt
T

÷

-j

x(t) sin 2_ft dt

T T

x(t) sin 2vft dt

T T

y(t) sin Zlrft dt)l

y(t) cos 2vft dt I

(3.22b)

(f:x(t) c°s 2_rft dt / (__:Y(t) sin 27rft dt/]

The real portion of Eq. (3. 22b) is the cospectrum and the in_aginary portion

is the quadspectrum. Thus one can compute the co- and quadspectra by

multiplying x(t) and y(t) by sine and cosine terms and performing the opera-

tions shown in Eq. (3.22b).

A difficulty encountered with directly implementing Eq. (3.22b) is

that the filteriag is accomplished by the integration process; hence, the

effective bandwidth of the analyzer is totally dependent upon the integration
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time. A modification that is used in commercial analyzers consists of

replacing all of the integration operations with lowpass filters. (These

filters are made as nearly identical as possible.) Then the raw cospectra

and the raw quadspectra are passed through an additional stage of lowpass

filtering before display. Ablock diagram of a typical cross-spectral

density analyzer based on direct Fourier transformation is shown in Fig-

ure 3-16.

3. 3 CONCLUSIONS AND RECOMMENDATIONS

The performance of analog correlators in general leaves a lot to be

desired, particularly when compared to the hybrid correlators discussed in

Section 5. Probably the major problem area is that of accurately implementing

the time delay. With drum delay correlators one has the problems of main-

taining very strict dimensional tolerances in a complex mechanical mechanism,

short record lengths for high frequency data on a reasonable drum diameter,

and frequently, excessive drum bearing wear. Magnetic tape delay corre-

lators are limited by nonuniform tape velocity. The magnetic correlator

described is limited in upper frequency response and the optical correlators

are presently operationally inconvenient.

The performance of analog cross-spectral density analyzers, on the

other hand, is quite good. Of the types described, those employing zero IF

filtering techniques are recommended as the best presently available because

this technique permits extremely sharp drift-free filtering of the data. It

should be noted however, that since these analyzers consist of a single pair

of filters that are scanned across the frequency range of analysis, an

appreciable amount of analysis time is required.
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4. DIGITAL DATA REDUCTION TECHNIQUES

4. 1 INTRODUC TION

The object of this section is to compile and describe many of the digital

techniques that have been developed to perform the analyses necessary for

time series data. Emphasis has been placed on techniques that minimize

the required computational time. The need for computational efficiency

arises from the fact that correlation and spectral density calculations (to be

defined more precisely in following sections) require, in general, large

amounts of computation. The primary computational loop that is involved

is a multiply-add sequence which often must be executed on the order of 107

times. This means, for example, that on a modern high-speed large-scale

digital computer where a fixed point multiply-add loop could be executed in,

say, 20 microseconds, a total of ZOO seconds, or 3 minutes and Z0 seconds

would be required for just the execution of this loop. This would be the

computational time required for just one single data record and, of course,

in many physical applications the number of data records to be analyzed

both individually and jointly can run into fairly large numbers. Hence, there

is a real need to give attention to this correlation computation loop in order

to make it less time consuming and more efficient.

Since this discussion will be primarily concerned with the discrete case

given by Eq. (2. 3), the notation will be simplified for later use. That is, it

will be understood that the interval AT separates two consecutive points of

the computed correlation function, and hence all reference to AT or At will

be dropped. Equation (Z. 3) then becomes

N-r

^ NrlRxy(r) - x_. Y_+r. , r = 0, 1, Z ..... m (4. 1)
i=l
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where
A
R {r)

xy

A
= R

xy
{rAT}

x. = x(iat)
1

AT = At

The most widely used digital computational method for spectra is based

on taking the discrete Fourier transform of Eq. (4. 1). In practice, the Fourier

transform takes a pegligible amount of computational time as compared to the

correlation computations. The potentially time consuming cosines and sines

may be either pre-calculated or generated by an efficient recursive procedure

which takes very little time. Thus, the over-all computational time is small

in comparison with the correlation function computations.

Recent developments and improved methods of digital or numerical

filtering have led to procedures whereby the power spectral density function

is computed directly by simulating the analog method. That is, the process

x(t} is filtered in a narrow frequency band B by the appropriate digital filter
a

and then squared, averaged and normalized to the analysis bandwidth B . Ina

the succeeding subsections, methods for both efficient correlation computations

and efficient filtering procedures will be discussed. A more precise definition

and more detailed explanation of digital filtering will be deferred until Section 4. 3.

It should be noted at this time that filtering procedures amount to taking

a sum of cross products betweena sequence of predetermined weights a. and
1

the process x. so that both correlation and filtering computations reduce to

multiply-add sequences. Hence, it is this operation that is of fundamental

importance for either method.

Storage of the data represents a serious problem for any digital analysis

of data containing high frequencies or requiring small time delay resolution.

Very high digitizing rates are necessary to meet either of the above two

requirements. Tf the data contains low frequencies, the sample record length

must be as long or longer than three or four periods of the lowest frequency
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number of binary digits (bits) in a binary digital computer are required to

represent any given individual data point.

digital converters present their output to a precision of 8-10 bits (including

the sign bit). For almost all applications, the recording instruments are no

more accurate than this, (one part in 256 to 102.4) and hence,

enough quantization.

As it turns out, for many time series parameters of interest, much

coarser quantization is often acceptable.

quantize to a single bit. That is, if the value of a signal is larger than or

equal to zero, set the bit equal to zero; if the value of the signal is less than

zero, set the bit equal to one. In simpler terms,

point is the only information retained.

discussed in Section 4.2.. 4. In mathematical terms,

signal, then the one bit quantized (hard clipped) signal y(t) is defined by the

relation

!

component to prevent excessive bias errors from these frequencies. With I

high digitizing rates, multiple channels and moderately long sample record

|
lengths, core storage capacity will be greatly exceeded and in many cases

it is easy to exceed the total storage capacity of digital tapes. I
g

4.2 CORRELATION FUNCTION COMPUTATIONS

In practice, two different types of time series data arise which are to I

be processed by a digital computer. Some processes are discrete by their t

very nature, say, for example, the daily closing prices of a given stock. On U

the other hand, some data arises naturally as a continuous record such as the m
continuously recorded output of an accelerometer located on the skin of a I

missile structure which is intended to give a measure of the vibration at that m

point. The continuous record is digitized by an analog to digital conversion

procedure for digital analysis.

|In either case, an important observation to make is that only a finite

na :y digital computer are required to

|_oi _t. In actual practice, many analog to

ut to a precision of 8-10 bits (including

SLti_ ns, the recording instruments are no

a 2 56 to 102.4) and hence, this is a fine I

s, ries parameters of interest, much I
,bl.. In the extreme case, one can

th_ value of a signal is larger than or

|ro if the value of the signal is less than

m Eler terms, the sign bit of the data
II

ft. Applications of this concept will be

enLat [ ms, if x(t) is the original

|
Lrd c:i _ _ign_ 1 gl th,_

( 1 , x(t) > 0 I

- I , x(t) < 0

y(t) = sgn x(t)
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A very important observation which is made is that when 8 to 10 bits

or less are employed for the level of quantization, the number of different

values that a data point can take on is not too great, namely 28 = 256 to

10
Z :: 1024 different values. By proper development of this concept, certain

time saving procedures can be implemented and are discussed in Sections

4.2.?., 4.2.3, and 4.2.5.

In the following subsections,

correlation function are discussed.

different procedures for computing the

First, the basic direct method of

implementing Eq. (4. 1) is described along with an indication of the number

of operations necessary for its implementation. The other methods are:

(a) one which actually expands the summation and collects like

terms so that common factors may be factored out in order

to trade additions for multiplications;

(b) a method which involves relatively coarse quantization in

order that advantage may be taken of one of the special con-

vert instructions of the IBM 7090 class machines which in

effect perform the table look-up;

(c) so-called hard clipping methods which are based on the one-bit

quantization;

(d) a method which takes advantage of the fact that a cross

product can be expanded as a linear combination of squares

which can then be efficiently obtained by table look-up

procedures; and finally,

(e) a direct Fourier transformation of the original time history

to obtain the power spectrum and then the correlation function.

These procedures will now be described.

4.2. ]L Basic Correlation and Spectrum Computational Method

The fundamental correlation computational procedures consist of

implementing Eq. (4. 1) directly. Then, if the spectral density function is
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desired, as is usually the case, the discrete Fourier transform is taken.
^

The formula for R (r) is repeated here for convenience.
xy

N-r

1
L x: , r = 0,1 .... m

Rxy(r) = N-r _ Yi+r '
i=l

In practice, since Rxy(T ) = Ryx(-T ), two parts of the cross-correlation

function will be computed for positive time delays. That is,

N-r

Rxy(r ) = x:_ Y'+r, , r = 0, 1 ..... m
i=l

(4.3a)

N

^ (r) = 1 _,
Yi Xi÷r , r = 0, 1 ..... mRyx N-r i= 1

(4. 3b)

The spectrum will be obtained from the correlation function but since only

positive frequencies are of physical interest, a physically, realizable spectrum,

G (f), is defined as two times S (f) for positive frequencies only. That is,
xy xy

Gxy(f ) = Z Sxy(f ) = Z ; Rxy(T ) e-jz=fT dT ; 0 < f < oo

-GO
(4.4)

(9O

Zfc°- [ Rxy(T ) cos Z_fT - j Rxy(T ) sin ZlrfT]
dT ;0 < f <oo

The discrete version will be computed in terms of the real and imaginary

parts, the co-spectra and quad-spectra, as follows. In the subsequent
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discussion, the hat will be dropped from R (r) to simplify notation.
xy

Axy(0 m_l xY (r) xy(m_

wrk

Cxy(k ) = 2AT + 2. A D(r) cos --+(-I)"A
r=l m

m-I

Qxy(k) = 4AT _. Bxy(r ) D(r) sin vr____kk
r=l m

k = 0, I, .... m

(4.5)

(4.6)

where for notational convenience C (kAf) = C (k) and D(r) will be defined
xy xy

shortly. The "even T' and "odd" parts of R (T) are computationally con-
xy

ven[ent and are defined as

1

Axy(r ) = : [Rxy(r ) + Ryx(r ) ] (4. 7)

r = 0, 1,2 ..... m

1

Bxy(r ) = _ [Rxy(r ) - Ryx(r)] (4. 8)

where Ryx(r) = Rxy(-r). The computational forms given by Eqs. (4.5) and

(4. 6) are trapezoidal rule discrete integration forms and are standardly used.

An additional multiplicative factor of two appears in Eqs. (4.5) and (4.6)

since the Fourier transform integrations are being performed over positive

time only.

The function D(r) is termed a "lag window" and is necessary due to

certain statistical considerations. This function results in good statistical

estimates being obtained within a small bandwidth B centered at frequency f
a

rather than a poor statistical estimate of nearly zero bandwidth at frequency f.

Thi_ ,' function may be related to the gain factor of the filter used in the direct

filtering method of spectral computations. For further discussion, see

Reference 10. Simplifications of Eqs. (4. 1), (4.5), (4.6) and (4.7) result
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in the autocorrelation case when y(t) = x(t). Then, since R (-r) = Rxx(r},xx

the computations for negative values of r need not be performed. Also,

A (r) = R (r) and B (r) = 0 so the imaginary part of G (f) is zero.
xx xx xy xx

Hence, G (f) is a real number.
xx

As mentioned before, the primary computational time is spent in the

evaluation of the correlation function. The Fourier transform, including the

so-called lag window, takes a nearly negligible amount of computational time

if the following recursive scheme is used for the evaluation of the sine/cosine

values necessary in the cross-spectral density computations.

osk(i + I) w/m 1

fnk(i + I) _r/mJ

E:omnm1[om/
in w/m cos w/mJ sin kwi/m

i = 0,1 ..... m

(4. 9)

where k is the frequency value index.

For the special case of a power spectral density function,

are needed which may be obtained from the recursion

only cosines

klr(i+ l) 12
COS - COS

m ---_-J/COS---_)- COS-m
(4. 10)

i= l,...,m

These recursion formulas save significant amounts of time as compared to

going to a sine/cosine function subroutine for each necessary value. However,

special purpose sine/cosine subroutines to give only the necessary accuracy

might be as efficient or more so. The number of multiply-add's required
m m z

for the computation of Rxy(r) is roughly (re+l) (N--_) _. raN- --_ This

essentially defines the required computation time. For the IBM 7094, the

4O

i

I

I

I

I

I

i

I
i

I

I
I

I
I

I
I

I
I

I



I

I

I

I

I

I
I
I

I

I
I
I

I

I
I

I

innermost multiply-add loop in floating point arithmetic takes roughly 12.

machine cycles at 1.4 _sec per cycle. Thus, for example, a typical program

operating on N = 10,000 data points for m = 1000 lags, the computation time

could be estimated to be

T = ncT 1a

:[mN -mZz ][lZ] [1.4x_O -6]

= [104 x 103 106 -6]
- _-- ] [lZ] [1.4x 10 _160 sec.

where:

T = the total computation time
a

n _-_

C =

W. =
1

the number of multiply-add operations

the number of machine cycles per multiply-add operation

the time for one machine cycle

If the sampling interval was At = 0. 1 millisecond, then the parameters in the

exaxnple correspond to a 10 Hz analysis bandwidth performed in the frequency

band 0 to 5000 Hz. See Reference 11 for a further discussion.

4. Z.Z Factoring of Common Terms

A method employed at MIT in connection with seismic: data analysis

is described in Reference 12. This method utilizes a data scan to factor out

common terms which appear in the summation for the evaluation of the

correlation function. This procedure can only be efficiently accomplished if

a relatively small number data quantization levels, as compared to the total

number of data points, are possible so that relatively large numbers of

common factors exist on the average. For example, suppose one has obtained

a sequence of data as indicated below.

i I 2 3 4 5 6 7 8 9 I0 II Ig 13 14 15 16 17 18 19 20

3 -Z I 4 Z 2 3 4 I 0 I -I 3 2 -4 0 3 4 I -2
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One can expand Eq. (2. 1) in the form

-xRy(r) = 1 _[X3+r +Xg+r + Xll+r + Xl9+r

+2 • [x5+ r + x6+ r + Xl4+r _ (x2+ r

+3 • [xi+ r + x7+ r + Xl3+r + xi7+r ]

- Xl2+r]

+ Xao+r)]

(4. 11)

+4 " [x4+ r + x8+ r + x18+r - Xl5+r ]

Note that when Eq. (2. 1) has been rewritten in this form, only 4 instead of 20

multiplications are necessary. Due to the reduction in the number of multiplies,

the evaluation of Eq. (4. 11) can be performed considerably faster than Eq. (Z. 1).

This is where the potential advantage lies.

Note that Eq. (4. 11) is a function of the specific data being used. There-

fore, the particular record of data which is being analyzed must be examined

in order to generate the computational form given by Eq. (4. 11). A complicated

program writing program is required; that is, a program whichwill generate

a computational program of the form of Eq. (4. 11) for each given input data

record.

A correlation function program involved in this procedure was written

for the data analysis procedures described in Reference 12. Assuming a

quantization of 100 levels, (between 6 and 7 bits) empirical speed advantage

factors were determined which are a function of the length of the data, as

indicated in the table below.

Table 4. 1 Speed Advantage (SA) Ratio of Computing Time of

Normal Method to Factoring Method

N 500 1000 2-000 5000 10,000

SA 3.6 5.7 8. 1 10.9 12.4
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Hence, for the particular data involved in this application, a consider-

able .,_avings in time resulted from this highly specialized con_putational

method. Considerable programming effort is required to develop the so-called

program writing program as opposed to merely coding the direct computational

method which is a disadvantage. This factor would have to be balanced against

the time savings which would be realized by this special method.

4.2. _:; Eight Level Quantization Method

Personnel at the Jet Propulsion Laboratory have programmed a method

based on a 4-bit quantization level. That is, plus or minus 8 levels of quanti-

zation are allowed which corresponds to roughly plus or minus one decimal

digit. The advantage of this coarse quantization is that if a few enough number

of levels is used, then table look-ups rather than multiply operations can be

employed in order to determine the products between a pair of data values.

Of course, when the number of potential products between two arbitrary data

values is too large, then it is likely that core storage is not large enough to

Contain the necessary table and this procedure cannot be used. Many of the

fast correlation computation methods are based on being able to employ a

table look-up procedure instead of direct multiplication. As will be shown

in the next subsection, data can be quantized all the way to only one bit and

still reasonable results can be obtained by a final functional adjustment of the

results.

The Jet Propulsion Laboratory Computation Center utilizes an IBM 7094

computer. A special instruction on the IBM 7094 provides an automatic table

look-up which may be utilized for performing the multiplications automatically.

The particular instruction used is one of the convert instructions (CAQ). By

proper construction of the multiplication table of possible multiplication results

between two data points and by proper placement of the two sets of data to be

multiplied, one can utilize one of these convert instructions to perform the
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table look-up to obtain the desired products between two sets of data. Simi-

lar procedures are used for the convert instructions in order to convert from

binary to binary coded decimal formats. The data must be pre-processed in

order to properly pack several data points into one computer word. The con-

vert instruction essentially adds in sequence the six, six-bit characters ina

computer word to a predetermined value and then accumulates the contents

of this location in the accumulator. Hence, six pairs of data points can be

multiplied in one instruction which is accomplished much faster than regular

multiply operations.

The results of this procedure, based both on experimental and analytical

results, indicate that very little precision is lost due to this coarse quantization.

This is to be intuitively expected since the correlation function is an averaged

result and results with more precision than the original data are often not of

any particular interest. But when one adds up many numbers of a given

accuracy, one, in effect, gains significant digits of precision and the mean

values resulting contain more accuracy than the original data. This additional

accuracy is, in general, of no interest.

One disadvantage encountered in employing sucha procedure, and, as a

matter of fact, the reason man7 engineering personnel do not like the results

of the 4-bit quantization method, is that so-called dynamic range is lost. That

is, one has a fundamental noise floor, so to speak, which increases in propor-

tion to the minimum level of quantization.

The JPL 8-1eve1 method has an inner computational loop requiring 24

machine cycles to obtain the sum of six products, tks an estimate, an additional

two machine cycles might be required on the average to prepare the data in

the necessary six data point per computer word format. The total is then

Z6/6 cycles per multiply add. For the previous example of N = 10,000 and

m = 1,000 the timing is approximately

160 26
T .... 57. 8 sec

12 6
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4, Z. 4 One-Bit Quantization Methods (Extreme Clipping Methods)

A relation between the correlation function of the so-called extreme

clipped signal [see Eq. (4. Z)] and an original Gaussian zero mean process

from which it is obtained gives the normalized correlation function (corre-

lation coefficient) Pxx(T) in terms of the correlation coefficient function of

the clipped signal pyy(V) by the formula

(T)]
Pxx(T) = sin[ _ pyy

(4. lZ)

where
Pxx(T) and pyy(T)

are defined as

Rxx(T) R 09YY
Pxx _TI'' - R (0) ; pyy(T) = R (0)

xx yy

(4. 13)

See ]page 34 of Reference 13 for a derivation of this relation.

Clearly, when the one-bit quantization is performed, the multiplica-

tions which need be accomplished become trivial. Various ways exist for

taking advantage of this trivial multiplication. One method which is employed

by JPL is to again use one of the convert instructions of the IBM 7094. In

this case the data is packed, 36 points per word, by an initial examination

of the input record. Then by proper generation of the table look-up procedure

and by employing the proper table, one can, in effect, look up 36 products

with one instruction by use of a convert operation. Six sets of products at a time

are obtained since the convert instruction operates on 6-bit character sets.

Other procedures than the use of the convert instruction might prove

to be just as efficient for evaluating a sum of one-bit products. One might

easily set up simple counters where after a point, say x. is selected, then
1
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all the products of x._ with each data point Yj+r ' j = l,...,N-r, could be

determined by simple examination of the data. This problem is not one

that can be solved in any general manner, because it depends on the charac-

teristics of the particular computer being used for the problem at hand.

There are certain problems conne'cted with the use of the clipping

methods for correlation computations. One problem is that i,ncreased record

length requirements are traded for computational speed assuming one wants

to maintain a constant statistical accuracy. It is shown in Reference 1 3,

page 37, that the variance of an autocorrelation function estimate is increased

by a maximum factor of roughly w2/4 _ 2. 5. This variance is proportional

to T, so if the variance is to be maintained constant, one requires record

lengths which are two and a half times as long as those needed if all the

information available in the data is to be used. As is further noted in

Reference 13, roughly the same bound holds approximately true for power

spectral density estimates. Although these are not precise theoretical rela-

tionships, they provide one with guidelines for evaluating the tradeoff between

accuracy and computational time when employing clipping type correlation

function computations.

An additional comment concerning the coarsely quantized correlation

function computation comes from the University of Arizona. In the Electrical

Engineering Department there, some experiments have been made testing the

variability of methods employing quantitized data. It has been found that

rarely over a 150% increase in the variability of autocorrelation function

estimates was experienced. Although the theoretical bound is a maximum

increase of 250%, it seems to be much less than this in practice. However,

there are apparently no completely acceptable analytical results available

on the variability questions at this time.

Note that certain assumptions are involved in the use of the hard

clipping method:
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(a)

(b)

(c)

Either a Gaussian distribution is assumed,

a sinusoid, or

a sinusoid plus Gaussian noise.

or

Eque, tion (4. 1Z} applies to data with these characteristics. Note that any

periodic data with the same period (i.e. , the same zero crossings) would

give the same clipped correlation function as that of a sine wave whose

clipped correlation function is a triangular wave prior to applying Eq. (4. 1Z).

In addition, only normalized correlation functions and spectra are obtained.

Thu.,;, the mean. square value must be calculated separately for use as a scale

factor. Note that nonlinear effects which distort probability density functions

to non-Gaussian shapes would completely be masked when such a computing

method is used.

An alternative method employing the clipping idea to correlation func-

tion computations is that of clipping only one of the components of the product

being computed. For example, if the cross-correlation function is to be

com]?uted between x(t) and y(t) then clip only x(t). In this case one again

trades multiplications for adds in that one merely adds up the sequence Yi

when adjusted for the proper sign of the point x. which is multiplying it. In
1

this case the correction factor can be shown to be

Rxy(r ) =_ Ryy(0) Rx sgn y(T) (4. 14)

I

I
I

I

where R (1") denotes the correlation function of x(t) with the hardclipped
x sgny

version of y(t).

This procedure has been tested in the Vibration Data Systems Section

of Marshall Space Flight Center. Encouraging empirical re,_ults have been

obtained as long as the records are reasonably Gaussian and as long as the

analyses are performed over reasonably long record lengths.
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Relative time estimates for this method are given in Reference 14.

For the IBM 7044 it is indicated that the computing time can be reduced

from 2.68 to 41 seconds which is a ratio of about 6 to 1. If this ratio is

assumed to hold for the IBM 7094 and is applied to the N = 10,000 , m= 1000

example, the final computing time would be

160

T - 6
- 26.7 sec

Presumably, the full clipping method would take proportionately less time.

Although specific coding is not available, one could expect to perform 36

multiply-add operations in roughly the same 2.4 machine cycle loop as

referred to in Section 4.2. 3. However, the data preparation would likely

require more time to prepare in the proper format. As a conservative

estimate, assume that an average of 2.4 additional machine cycles are neces-

sary or a total of 60 cycles per 36 multiply-adds. The total time for the

N = 10,000 , m = 1000 example would then be

160 60
T .... 22. 2 sec

12 36

4. 2. 5 Sum of Squares Method

An additional technique which has been suggested (see Reference 15}

takes advantage of the finite quantization of the data and expresses the product

as a sum of squares. The fundamental relation which is employed here ex-

presses the fact that a cross product may be expressed as a ;linear combina-

tion of squares by the following relation:

1 2 2
xy--_[(x+y) z-x -y ]
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This is very similar to the fairly well known"quarter-square" method which

has been used in construction of analog multipliers. (See Eq. 3.4 and subse-

quent discussion, } This equation may be modified into a form involving the

correlation function immediately.

!

I Rxy(r) =-_- i=l (xi+ yi+r) i=l i

I

I
I

I
I

I
I

.-r ]Yi+r
i=l

(4. 16)

The key point in using such a relation is the fact that tables of squares

take up much h:ss storage space than tables of cross products for the same

number of data points. For example, say 10-bit quantizationis being used so

that a table of size 2 Z0 cells would be required if all possible cross products

were to be stored. The same table of squares of the sum of the data points
11 11

wou]!d only take up Z cells. 2 might be a very reasonable table size,

whe:reas 2 2-0 is not.

The second and third sums of squares on the right hand side of Eq. {4. 16}

are evaluated by simple recursion relations. First, one computes the sum

of squares of all the data. This requires only one pass through the data' Then

the partial sums of squares are obtained from

N-r N-r+l

I __ _ _
x. : x. - XN_z z r+l

i=l i=l

N-r N-r+l

Z' Z ' 'Yl+r = Yi+r-1 - Yr
i=l i=l

, r = 1,2-, ..... m

, r = 1,Z, .... m

Since only one pass through the data is required initially plus one subtraction

operation for each correlation function point, the amount of time recluired is

negligible compared with the over-all correlation function evaluation.
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The other portion of _.q. (4, 16) requires a more complicated method

for evaluation. One possible method of programming for the IBM 7090 is

given in Reference 15. This method requires one pass through the data to

set it up in a special tabular format. Then with the aid of a table of squares,

the quantity

N-r

(xi
i=l

six machine cycles.

table set up, etc. , which must be done,

the example of Section 4.2. 1 (N = 10 4 ,

2

+ Yi+r) can be generated in a computational loop requiring

If one allows one extra machine' cycle to account for the

the computational time estimate for

m = 103 ) would be about

7
T =

12
160 sec _ 93. 3 sec

whereas the fixed point arithmetic loop for the basic way requires 11 cycles

and the time is

11
T - 160 = 146.7 sec

12

There are certain additional considerations with this procedure. First,

it is assumed the data is in fixed point and second, when the amount of data

is too large to fit into core memory simultaneously, some of the advantage

might disappear.

4.2.6 Direct Computation of Spectrum from Fourier Transform

The unsmoothed or raw spectral density function (the periodogram}

can be computed directly from the Fourier transform of the original time

history. The power spectral density function can be defined as the variance

of the transformed process. The cross-spectrum is the covariance between

5O
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two transformed variables. In equation form these statements are

- I >1G (f) = Vat Ix(f}] = E[ X{f 2]
xx

(4. 17}

G (f} = Cov[X(f}, Y(f)] = E[X(f} Y (f}]
xy

(4. 18}

The wavy line is to indicate the unsmoothed spectrum, the asterisk denotes

complex conjugate. For discrete time records,the averaging (expectation)

is done over time. The computational forms of Eqs. (4. 17} and (4. 18) are

x° I 2=ki _ 2=k_G {k) = At + x.cos + x. sinxx T 1 _ 1
i=l "=

(4. 19)

k = 0, 1,2 ..... N-I

'_ 21rki
Gxy(k ) :: At + xicos---_[ -j x. sin 21rki

i=l "=

2 Trki

+ YiCOS----N---
i=l

+j N_,t)Yi sin _.__i

(4.20)

k=0,1 ..... N-1

To obtain final smoothed estimates equivalent to those obtained from

Eqs. (4. 5) and {4. 6}, a smoothing (convolution) operation must be performed.

That is, one evaluates the equations
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G (k) = aoGxx(k) + _.
xx

i=l

a[_ (k+i)+_ (k-i)]
I XX XX

N 2N m-I
k = 0,--,--, .... --N, N

m m m

where the a. , i = 0, 1,...,_ are the discrete values of the Fourier transform
1

of some particular lag window D(r).

This method is usually not considered because of the large computa-

tional requirements for direct evaluation of Eqs. (4. 19) and (4. Z0). For example,

the power spectrum requires about 2N multiply-add operations for each of N

raw spectrum values. This is a total of 2N 2 operations for all N points. The

generation of the necessary sines and cosines would require additional time if

it is assumed that the values are not already available in storage. Equation (4.9)

would be used for sine/cosine generation. Thus, 2N 2 operations plus additional

smoothing are to be compared with the Nm multiply-add operations necessary

when computing the correlation function plus a Fourier transform of the corre-

lation function. Thus, for the case of N = 10,000 points, the computational

time is estimated to be T = 1600 seconds.

One gains the maximum resolution or, equivalently, narrowest possible

bandwidth (B = l/T) for the additional computing time. However, due to the
a

large statistical variability associated with narrow bandwidths, it would be

assumed that wider bandwidth estimates are generally wanted. The smoothing

indicated by Eq. (4.21) reduces the statistical variability while widening the

bandwidth.

4.2.7 Gooley-Tukey Variation of the Direct Fourier Transform Method

Special methods are available under certain conditions to speed the

computation of a Fourier transform. A method is described in Reference 16

which reduces ZN 2 to roughly 2NlogzN complex multiply-add operations where

N is an even power of 2, that is,

N = 2 p , p an integer (4. Z2)
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Since the multiplication and addition of two complex variables requires about

four times the work of a real variable multiply-add, the number of operations

becomes 8Nlog24N in terms of real numbers.

The algorithm given in Reference 16 applies generally in complex

numbers, but no particular simplification exists for spectrum computations

based on only real numbers. The computational method is a recursionand

intermediate values become complex numbers which obviates significant

simplifications being made. Let the Fourier transform be denoted by

X(k) = X(kAf) and defined by the equation

N- 1 . 2trik

-3 NX(k) = At x. e , k = 0, l..... N-I (4.23)

i=l

where

the results X(k)

digital computer.

expansions.

N is a power of two defined by Eq. (4. 22). The input data x. and1

can be considered to be stored in the memory of a binary

Then the indices k and i can be expressed as binary

k = k 2P-i + + kl 2 + k0
p-i "'"

i = i 2 p-1
p-1 +''" + i12 + i0

(4. 24)

k = 0,1 ; i = 0,1
v v

The numbers X(k) and x. are considered as being stored in binary core
1

memories with location addresses given in binary form beginning at zero

as indicated in Figure 4_1, which is an example for N = 16, p = 4.
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Decimal, Binary xu) Decimal, Binary X°

1

0, 0000

I, 0001

2, 0010

3, 0011

x(o, o, o, o)

x(o, o, o, l)

x(o, o, 1, o)

x(o, o, 1, 1)

0 0000

I, 0001

Z, 0010

3, 0011

16, I 1 1 l _ 16, 1 I 1 1

x0000

x0001

x0010

x0011

Figure 4.-1 Binary Storage Locations for Fourier Transform

Now Eq. (4.23) can be written

X{kp_l ' k0 ) =E E E x. e N p-1
.... k0kl''" k lp_ 1, .... i 0p.l

• 2p-I
+... +i0)

(4. zs)

k =0,1
y

Each summation consists of only two terms since one is adding over the

binary components of the number. These summations can be performed

sequentially by making use of the relation

2_rvk. ip_i2 p-I -jg_ kp_ gp-I 22p-2ip-I -j2_ P- p-I-j Z_ 1 i k
7. 2

e =e e ...e

Zlr I

-J _ koip-I zp-

2w 2P-I
-j -_- k0ip_ 1

= (I" I" ... • 1)e (4.Z6)
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Since ip_ 2 , ip.3 ' .... i 0 have been removed from the exponential, one can

evaluate the two term sum

2_ koi. p 2p- 1
"J -N- -1A 1 {k0' i .... = x. .p-2 'i°) i 1- 1' . io e (4. Z7)

p- 1 P- lP-2 ....

=0,1. i =0,1k0 ' v

Note that A 1 consists of a set of N numbers each depending on two of the

original data points. In the example of Figure 1, x0000 and Xl000 would

be involved in both AI(0, 0, 0, 0) and AI(1, 0, 0, 0). The general recursion

is based on the following generalization of Eq. (4.26).

. 2w k. 2p-I -j 2w (k 2l-l+...+k-j--_ ip__ -N- _-1 ip-_ 2p-I
e = e (4.Z8)

Then successive sums are evaluated according to the equation

Al(k0 ..... kl l:'kp-_-l'''" ,i0) (4.29)

2_r 1
-j -_- (k_ _ 12_ - +.., +k0) ip_12 p-

Al_l(k 0 ..... kl_2, ip_ 1 ..... io) e

p-_

In its simplest computational form, Eq. (4.29) becomes
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Ai (ko,.•.,k__l'ip_i_1.....io)

k_ _ 1 ki _Z

+ (-I) j

= Al_l(k0 ..... k__z,0,i ..... i 0)p-_-I

A__ l(k0, .... k__z, 1, ip___ 1' .... i0)

ZTr -3 +... +ko) . zp -I"J-K (k__3Z_
• e

(4.30)

I
I

I

I

I

I
k = 0,1 ; i = 0,1

v 1,,

= 1,2 ..... p

The final transformed values are

X(kp_l,...,k0) = A0(k0' .... kp_l )

Note that the indices are reversed. That is, the final data values are not in

the correct order in core memory if they are stored by sequence of their

index value.

The sine and cosine in the complex exponential values can be generated

in advance and stored ina table recursively by the method of Eq. (4. 3) where

_-1
instead of _/m, the quantity _/2 appears in the Zx2 matrix. Keeping in

mind that complex arithmetic operations are being performed, one sees that

for each element of each A! , one complex multiply-add operation is required

plus some bookkeeping to decide if (-1) kg-1 • j k_-Z is positive or negative.

Also, one complex multiply-add operation is necessary for the recursive

generation of the complex exponential which gives a total of two complex
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multiply-add operations. Thus, since there are N = 2 p elements in each AI

and I = 1,2,...,p, the total number of operations is

T = 2Nlog2N =: 2pN complex operations = 8 pN real operations

= logzZP = p. It can be reasonably assumed for time estimatessince logzN

that the basic necessary multiply-add loop requires 12 machine cycles plus
k__ 1 .kl-2

an additional cycle to account for the sign of (-1) • j For the example

used previously, N = 10,000.
14

Assume for here that N = 2 = 16,384 > 10,000. Then the total

time for the Fourier transform is

T = 8 x14x104x13xl.4x106 = 14.56 sec

An additional 2N operations are required to obtain the raw power spectrum

and an assumed re. g0 = 2x104 of a 41 point smoothing arc and 1000 lag are

used. Thus,

T' = 4x104 • 12xl.4x10 -6 = .67 sec

and

T + T' = 14.56 + .67 = 15.2 sec
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4. 3 DIRECT SPECTRAL COMPUTATIONS

The preceding sections have discussed the efficient computation of

correlation functions. Although correlation functions are at times of interest

for their own sake, they are often obtained merely as an intermediate step

in computing the power spectral density function. In the past, the Fourier

transformation of the autocorrelation function was the most efficient method

known for obtaining the power spectral density function. However, recent

developments in digital filtering techniques have shown that in certain cases

it can be almost as efficient and in other special cases more efficient than

the correlation function method. The correlation function is obtained from

the spectral density function by an inverse Fourier transformation.

In certain cases, advantage can be taken of the physics of the prob-

lem which suggest possible speedups in the computational procedures.

Variable bandwidth methods are one possibility which is discussed.

4. 3. 1 Basic Filtering Procedure

Certain basic relations involved in filtering concepts will be reviewed

here. First of all, a linear system or operator L is one which fulfills the

requirements

L[axl(t) + bx2(t) ] = a L[xl(t)] + b L[xz(t)] (4. 31}

where xl(t) and x2(t ) are considered as input variables. A physical linear

system can be characterized by a frequency response function or weighting

function. A weighting function is defined as the response of the system to a

unit impulse function. This weighting function will be denoted by h(t) and

can be shown that the output y(t) of a system is then given by the following

equation if the input is x(t).
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oo

y(t} = i h(t- T) X(T) dT (4. 3Z)
d
-CO

The value of the frequency response function H(f) at the frequency

f is a complexnumberwhoseabsolutevalue (gainfactor) IHIf)I ispoint

the change in amplitude of a sine wave which is operated on the system and

whose argument (phase factor) _{f} is the change in phase or equivalently,

the time delay experienced by the sine wave when passing through the system.

It cart be shown that the frequency response function is the Fourier transform

of the weighting function. That is,

(30

H{f) = f h(t)e -jy'lrft dt = I l ll e -jqb(f)
-0o

(4. 33}

It is the shape of the frequency response function gain factor which

is of primary concern in designing a spectral analysis. One ideally wants

a square, so-called bandpass,, filter which will restrict the frequency output

to a narrow frequency band of predetermined choosing. That is, I H(f) I

should have roughly the form indicated in Figure 4-2. In the digital case,

the weighting function will actually be implemented and applied to the input

x(t) in order to obtain the output y(t) which for spectral analysis will now be

a sharply bandlimited function. The discrete formula for the output would

then be

P

Yj = _ a ixi+ j
i=-p

(4. 34)

For a so-called recursive (feed back) filter, the output is obtained as a
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I

function of both previous values of the output and input.

then becomes

Equation (4. 34)

P q

!
I I

yj = _ aixj_i + _ bk yj_ k (4.35) I
i=0 k=l

Recursive filters are often more efficient computationally than the moving

linear combination such as indicated in Eq. (4. 34). However, moving linear

combination filters can be constructed with perfect zero phase shift charac-

teristics whereas recursive filters cannot.

I

I

I

I

1.0

I .111
0

-¢-
I
I

.... I _-- B
I
I
f
I

fo

f ...--_

Ideal

1.0

H(f) [

I

fo

f -----_

Physically Possible

Figure 4-Z. Spectral Analysis Filter

Various methods exist for obtaining coefficients a. in Eq. (4. 34). See, for1

example, Reference 17 or Reference 18. One method might be of merely

specifying the desired frequency response characteristic I_11 Ig_n_cto_
in a numerical form and then computing the discrete Fourier transform

which gives the discrete values of the weigting function h(t). It is these
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discrete values of the weighting function which then become the weights a.
1

in Eq. (4. 34). Other methods exist for evaluating the weights a.1 and b k in

Eq. (4. 31) which will not be discussed here but which are available in the

cited literature

The spectral computational procedure employing a direct filtering

approach for the power spectral density proceeds as follows:

. With an appropriate weighting function, compute filtered values

of x. restricted to bandwidth B at center frequency f. Let
1

this output be denoted by Xi(B a,f) , i = 1,2 ..... N.

Xi(B a, f), i = 1,2,...,N. Namely,

2. Compute the variance normalized to unit bandwidth of the sequence

Gxx(f ) = _B a X Z
I i=l i (Ba' f)

(4. 36 )

3. Select new filter weights with center frequency f + B and
a

width B • Repeat Steps 1 and 2.
a

For cross-spectral density functions, a quadrature filter (90 ° out of

phase) must be applied in order to obtain the imaginary component. Instead

of squaring one obtains averaged cross products (the covariance) between

the two signals x(t) and y(t). The procedure is

, With appropriate identical weighting functions co:repute filtered

values of x. and Yi restricted to a common bandwidth B and1 a

common center frequency f. Also shift yi in phase by 90 °.
#

Denote these outputs by Xi(Baf), Yi(Ba, f)and Y'I (Ba' f) , i= 1, Z,..

where the asterisk indicates the 90 ° phase shift.

.,N
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2.. Compute the covariance normalized to unit bandwidth of each

of the two pairs of sequences.

N

xy(f ) 1 _ Xi(B a f)Y.(B f)C = NB ' 1 a'
a i=l

N

_ Xi( ;:*(B a1 B f) Y. , f)
Oxy (f) -- N----_ a' 1

a i=l

(4.37)

(4. 381

. Select new filter weights with center frequency shifted by an

amount B and of bandwidth B . Repeat Steps 1 and 2..
a a

This procedure is roughly the one presently employed in biomedical

data analysis at UCLA. There it has been found that although for a single

record transforming the autocorrelation function is the most efficient pro-

cedure, when one wants to compute cross-correlation and cross-spectral

density functions among a group of input records numbering more than four,

this direct filtering procedure becomes more efficient. This is due to the

fact that parallel processing procedures are more easily implemented with

the direct filtering approach than with the correlation function approach. It

has been found that it is simpler to operate on the data sequentially with

direct filtering. With one pass through the data, all spectra and cross-spectra

can be more conveniently and more efficiently obtained than they could by

attempting to compute the correlation functions.

The term parallel processing refers to approximately simultaneous

computations. For example, one can compute an autocorrelation function

as data is read into the digital computer to eliminate any record length

restrictions. To illustrate this, suppose an autocorrelation function with
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m : 5 lag values is to be computed. All lag values can be determined by'

reading only 2(m+l) = 12 data points at a time into the computer storage.

The process proceeds roughly as follows:

,

2.

Read in data points x 1, .... x 6

Compute and accumulate products:

Rxx (0 ]

2

x I

R (1)
xx

R (2)
xx

R (3)
xx

R (4)
xx

x 1 x 2 x 1 x 3 x 1 x 4 x 1 x 5

2

x 2 x 2 x 3 x 2 x 4 x 2 x 5 x 2 x 6

Z
x 3 x 3 x 4 x 3 x 5 x 3 x 6

x4x 5

x 5 x 6

2

x 4 x4x 6

Z

x 5

2

x6

Rxx (5)

x I x 6

.

.

The above products are then summed by column to obtain partial

sums to eventually make up points on the correlation function.

Read in data points x 7 ..... x12, save x 1 ..... x 6

Compute and accumulate the products:
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,

R (0)
xx

Z

x 7

2

x 8

Z

x 9

Z
xlO

i

2
x

11

Z

xlZ

R (_) R (z)
xx XX

x5 x 7

x 6 x 7 x 6 x 8

x 7 x 8 x 7 x 9

x8x 9 X8Xl0

X9Xl0 X9Xl 1

Xl0Xl 1 Xl0Xl2

XllXlz

R (3)
XX

x 4 x 7

x 5 x 8

x6x 9

x 7x I0

X8Xl 1

x9XIz

Rxx(4) Rxx(5

x z x 7

x 3 x7 x3 x 8

x4x 8 x4x 9

x5x 9

x6x lO

X7Xl 1

x8xI2

x5x I0

X6Xll

x7x12

These products are added to the previous partial sums by column.

The next set of six data values would be read into the storage

space occupied by the first six. By proper programming one

computes the appropriate cross products and accumulates the

partial sums as the process goes along so that when the data has

been read, all points on the correlation function will have been

determined. One can fairly easily generalize this to handle an

arbitrary number of variables if the data is multiplexed. That
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is, denote the variables by xl(t), x2(t),...,x (t). The N digitized
P

values of xl(t ) are denoted by Xll,Xl2,Xl3,...,XlN. ]For the

remainder of the variables, the data is then arranged on the digital

input tape in the sequence:

Xll,X21 ..... Xpl ; x12,x22 ..... Xp2 ; x13,x23 ...... Xp3 ;

... ; XlN,X2N ..... XpN

All auto and cross-correlation functions can then be computed

in parallel with the required storage being 3p(m÷l) cells.

Similar computational principles are employed when direct

filtering is used to compute all power and cross-spectra at all

frequencies in parallel.

There is one important computational procedure that must be employed

before efficiency is gained with the direct filtering method for parallel com-

putations. The idea of decimating the data must be employed. This term

refers to the fact that it is not always necessary to compute as many output

points of the filter as there are input points. For example, although one has

1000 data input points, it might only be necessary to obtain Z00 output points.

See Figure 4-3.

This procedure is justified by the following considerations. The

sampling of a random process is usually performed at a fairly high rate in

orde:r to avoid tlhe phenomena of aliasing. Although not discussed in tech-

nical detail here, this amounts to the fact that it is impossible to distinguish

sine waves of multiples of a given sampling frequency. This phenomenon

can result in high power at high frequencies being "folded", so to speak,

*Strictly speaking, decimation would refer to dividing into tenths, that is,

taking every tenth point. For convenience, it is used here, as in Refer-

ence 19, in a general manner, not necessarily restricted to tenths.
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across the folding frequency f = l/?(At) and appearing added in to lower
C

frequency power. Hence, once the data has been sampled at a high enough

rate to avoid aliasing, fewer points need be output from the digital filtering

operation. One can show that a fewer number of points can be used without

any appreciable loss of statistical accuracy. This is due to the fact that the

correlated data points contain redundant information. For example, it is

claimed on page 45 of Reference 19 that using every fourth data point results

in no appreciable loss in accuracy.

For any given application, the amount of decimation which is employed

might be adjusted as a function of the aliasing frequency involved and the

degree of statistical stability which is desired.

9 Point Filtering Span

[i I I II III I II II II II il Ill

lll[lllllllllll Illlill
'%___. ,_.__J _ , ,

v_. I! I I

l • , i I

I _'>'
i i
i I

i iI

IIIII x.
II111 1

I

I i
I i

Every Fourth Point Computed

Figure 4,-3, Illustration of Decimation

Typical compatational times might be as follows. For the previously

used example of N = 10,000 and m = 1000, a 41 point moving arc, phase-

less filter might be necessary to obtain suitably sharp cutoff characteristics.

This requires 20 multiply-add operations per output point. Assuming a 4 to 1
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decimation, Z500 points must be squared and averaged to obtain each power

spectral density point. If m/Z power spectral density estimates are computed

at the :spacing B = 1/mAt, then the total number of multiply-add operations
a

is:

Number of Operations = • Z0 + • _-

Assuming that the basic IZ machine cycle multiply-add sequence used for the

correlation computation times would apply here, the time estin_ate for the

examp[e is

T = 2500 • 21 • 500 • IZ " 1.4x 10 -6 sec = 441 sec

Recursive filters with sharp cutoffs consisting of 7 weights are reasonable.

They have the disadvangtage of not having zero phase shift but are computa-

tionally efficient. The time estimate for a 7 point filter is

T = 2500 • 8 • 500 • 12 • 1.4x10 -6 sec = 168 sec

Thus, the recursive filter method can be about as efficient as the correlation

transformation method.

4.3. Z Use of the Sin x/x Filter

The definition of a frequency response function of a particular form

results in a weighting function of an extremely simple form which can simplify

the digital filtering operation. One can then apply repeated combinations of

this expecially simple weighting function to obtain other more complicated

frequency response function forms. A frequency response function given by

the equation

67



sin ZlrfT
H(f) = 4_rfT 21rfT

(4. 39)

has for a weighting function

h(v) = 1 , -T < T < T (4.40)

Hence, the discrete weights a. obtained for this weighting function would all
1

be unity and the filtering operation applied to the input data would not require

multiplies and adds, but merely adds. This, of course, results ina more

efficient computing procedure.

The penalty paid for this computational efficiency is the fact that the

frequency response function shape for Eq. (4.39) does not approach very

closely to the ideal indicated in Figure 4-2. The shape of the frequency

response function H(f) of Eq. (4. 39) is given roughly in Figure 4-4.

IH(f)

0 f

Figure 4-4. Filter Frequency Response of Sin x/x Form

Although Eq. (4. 39) in its original form does not give frequency

response functions of satisfactory shape, when one takes powers one ob-

tains more useful filters. That is, one defines frequency response func-

tions by the equation
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Ht(f ) = 4_r fK \ 2_rfK ,/ (4.41)

One then employs the well-known theorem which says that multiplication in

the frequency domain is equivalent to convolution in the time domain and vice

versa. Thus, the multiplication of the frequency response functions to obtain

higher powers results in repeated application of the unit weighting function.

The weighting function ht(t ) would be given by the formula

co

ht(t) = f ht-l(t) h(t-v) dv (4.42.)
-(30

In practice, the modified convolution operation is obtained by reappli-

cation of the unit weighting function to previously filtered data.

There is an additional necessary operation which reduces the computa-

tional efficiency of this procedure. In order to maintain this specific simple

weighting function (frequency response function), the filter must be kept at

zero center frequency. This means that it is required to "demodulate" or

"heterodyne" t:he data in order to map it into a neighborhood of zero frequency.

This can be accomplished by the transformation

, Jc°0t

x t = e x t (4.43)

This operation must, of course, be eventually undone; by application

of an appropriate factor to the final spectral density estimates. This approach

has been employed in practice at Princeton University although they have

found in general that the autocorrelation transformation procedure is faster.

The demodulate-filter method is sometimes more convenient in that the type
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of filter used in the spectral analysis can be easily varied by merely taking a

higher power of H(I). The direct filter procedure is usually more convenient

in obtaining certain higher order spectral density functions which are involved

in complicated nonlinear problems.

In this discussion, as in others concerning direct filtering computa-

tional methods, the procedures are directly applied to either cross spectra or

power spectra. One follows the over-allprocedures indicated earlier in

Section 4. 3. 1.

This method can have efficient application to problems where only a

specific section of the frequency band is of interest. That is, onlya small

portion of the power spectrum is of interest. The heterodyning of the data

down to the low frequency band allows reduced sampling rates to be taken

advantage of to reduce the amount of computation. Direct timing comparisons

are not meaningful here due to the strong dependence on the freedom to choose

specific frequency bands.

4. 3. 3 S.in_le Tuned Filter Methods

It was mentioned in Section 4. 3. 1 that recursive filters are often imple-

mented with more computational efficiency than corresponding moving average

filters. A filter which does not have an extremely desirable frequency response

function shape, but does have a very simple _ecursive form, is the so-called

single tuned filter or the frequency response function corresponding to a single

degree-of-freedom linear system. This frequency response function has a

shape roughly as indicated in Figure 4-5.

If x(t) is an input to a single degree-of-freedom linear system, then

the output y(t) is givenby the extremely simple recursive form

Yi = x._ + a._Yi+l + a2Yi-2 ' i = I,Z ..... N (4.44)
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a I = Z exp(-¢o 0 _At) cos(co 0 At 41 - _2 )

a 2 --_exp(-2¢o 0 _At)

¢o0 = Z_f 0 = natural frequency

= damping ratio (controls sharpness of response peak)

At = sampling interval

This filter might be employed in a variable bandwidth procedure such as is

discussed in the following section. The natural frequency f0 of the filter

would be varied to give one a sequence of spectral density points as indicated

in Fiigure 4-6.

In practice this procedure would be implemented by filtering data with

a filter located at frequency point f then filtering at frequency point fm' m-1

and subtracting the two outputs. This output is proportional to the power with-

in a fairly reasonable frequency band corresponding to the difference of these

two frequency response functions. Although this procedure is promising

from the computational efficiency point of view, there are several problems

that must be resolved before it is practical to employ. First of all, the shape

of the frequency response function is not at all ideal. One must evaluate this

non-ideal shape in terms of bias in the resulting spectral density estimates

and also in terms of the variability of the spectral density estimates.

The question of bias error has not been thoroughly resolved and no

digital application of this procedure is known to the author. Even though the

procedure might not be suitable as a highly refined spectral density analysis,

it might be very useful as a rough quick-look type of analysis. The single

tuned filter approach can be implemented with a two weight recursive filter.
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f

Figure 4-5. Frequency Response Function of Single Tuned Filter

I I i
f f f f f

m-4 m-3 m-2 m-1 m

Figure 4-6.

f

Sequence of Single Tuned Filters for Spectral Analysis
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The additional add operation needed would require two more machine cycles

for each pair of 12 machine cycle multiply-add loops, or a total of 13 cycles

per loop. Hence, the time estimate for the N = 10,000 , m = 1000 example

is

-6
T = Z500 ' 3" 500" 13" 1.4x10 sec = 136.5 sec

4. 3. 4 Variable: Bandwidth Procedures

In all of the discussion up until this time, except for Section 4. 3. 3, it

has been tacitly assumed that the spectral density function has been computed

over a frequency band subdivided into a contiguous set of frequency intervals

of equal widths. That is, a Z0 Hz resolution bandwidth subdivision of the range

0 to 1000 cycles would be 0 to 2.0 Hz, 20 to 40 Hz, 40 to 60 Hz, etc. This is

a proper frequency subdivision for many applications. However, there are

certain applications, for example, those of vibration analysis of structures,

where a variable bandwidth analysis is more meaningful. This is based on

the rationale that the bandwidth of a structural response tends to increase with

frequency. Hence, if one wants to resolve two structural response peaks at

high frequency,one can get along with a wider frequency analysis than at low

frequencies. Thus, a logarithmic type of subdivision of the frequency axis

is often suitable. Realizing this fact can result in certain efficiencies in the

computing procedure merely by reducing the number of points which are

computed on the spectral density function. These topics are discussed in

some detail in Reference 20 and will be briefly reviewed here.

Although the exact subdivision of a frequency band into variable widths

is in itself a somewhat complicated procedure, one can proceed in the follow-

ing :manner. Suppose that the interval 0 - 1000 Hz is to be divided ir_o R

intervals according to an arithmetic progression law with smallest frequency
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bandwidth A. That is, the width of the ith band is defined as

Af. = iA
1

Then A may be obtained as (page 5, Reference 18)

2(fmax - fmin )
A =

(R+I) R
=4.8

The results for a 20 interval subdivision of 0 - 1000 Hz are shown in

Table 4.2.

Table 4.2. Twenty Interval Variable Bandwidth Subdivision

(4.45)

(4. 46)

I

I

I

I

I

I

I

I

I
interval

i Af.
endpoint

1 4.8 0

2 9.5 4.8

3 14. 3 14. 3

4 19.0 28.6

5 23. 8 47.6

6 28.6 71.4

7 33. 3 100. 0

8 38. 1 133. 3

9 42.3 171.4

10 47.6 214.3

interval
i Af.

1 endpoint

11 52.4 261.9

12 57. 1 314. 3

13 61.9 371.4

14 66.7 433.3

15 71.4 500.0

16 76.2 571.4

17 81.0 647.6

18 85.7 728.6

19 90.5 814.3

2O 95.2 904.8

1000.0

I

I
I
I

I

I

I
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Note !m this case a resolution varying between 4. 8 Hz and 95.2. Hz is obtained

from 20 frequency points. If, for example, the bandwidth of 20 Hz was used

throulghout, then 50 points would have been required. If a bandwidth of 5 Hz

has been used which roughly corresponds to the minimum bandwidth obtained

here, then 200 points would be required.

If a direct filtering procedure is used in obtaining the spectral density

estimates, then the amount of computing is directly proportional to the number

of spectral points. If this variable bandwidth frequency interval subdivision

is a reasonable procedure,

Programs presently in use

or greater.

significant time savings can be accomplished.

_have demonstrated times savings of a factor of 3

An alternative approach is to break down the frequency interval into a

set of, for example, three sets of points, each set having a different band-

width. A choice of bandwidths that might be employed over the interval 0 to

Z000 Hz is depicted in Figure 4-7.

10Hz 50Hz 250Hz (filter bandwidths)

t I I

I IIII I • • o_,,,,, , a I 1 i s _ I
I ; i
! I

! !
! !

I
! ! !

50 Hz 250 Hz 2000 Hz

f _

Figure 4-7. Illustration of Variable Bandwidth Procedure

This type of frequency breakdown might be suitable for a crude quick

look analysis again. In this case, the spectral density function could be

obtained either by a direct filtering method or by a method which involves

computing three different autocorrelation functions.

It can be shown that the bandwidth of a spectral analysis is,under certain

conditions ,roughly equal to

B = 1/T = 1/mAt (4. 47}
a max
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Bandwidth is inversely proportional to T under any circumstances.max
Hence, the bandwidth of the spectral analysis can be controlled by the maxi-

mum time delay value to which the correlation function is computed. For

the three bandwidth frequency subdivision, three different T would be
max

chosen,each of which would correspond to the appropriate bandwidth selected.

First the correlation function would be computed out to the smallest

T value which would correspond to the widest frequency band chosen.
max

This correlation function would be Fourier transformed and the spectral

density points computed at the appropriate frequency points desired. Next,

in order to avoid aliasing, numerical filtering must be performed which can

be followed by decimating. This is logical since there is no point in com-

puting any more correlation points than have been computed on the first

correlation function. The same number of points will be computed for the

second and third functions, but at wider spacing. This will maintain statisti-

cal accuracy roughly equal throughout the whole spectral density function.

In the particular case being illustrated, the decimation would consist

of taking every fifth point on the output of the numerical filter since each

succeeding bandwidth is one-fifth of the preceding. Likewise, each succeeding

maximum time delay is five times the previous. This procedure is repeated

two times to give the correlation functions and the maximum bandwidth power

spectral density function, It has been estimated in Reference Zl that a quick

look spectral density analysis can be performed with a very small amount of

computation time when this method is employed. No actual computational

experience has been gained with this procedure as of yet, however.

An additional way of subdividing the frequency axis is by octaves. That

is, each new interval is double the previous. This has the advantage of reducing

to an exactly equal interval subdivision when plotted on a logarithmic scale.

A particularly suitable subdivision is that of one-third octave intervals.

This has a great advantage in acoustical and vibration applications. This is
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due to the fact that certain analog type analyzers have been in existence for

many years which employ this subdivision and hence display of results in this

format is familiar to many people. However, there is not necessarily any

physical justification to the use of the 1/3 octave bandwidth.

As an exaraple, a recursive filter has been developed at Douglas Aircraft

Company with approximately linear phase shift with filter gain factors as

indicated in Figure 4-8.

l 1.0

Figure 4-8.

! _ I o

I I o I

, , ! I

I -: I' !

6 789

500 1 )00 2000

_ octave

Filter Frequency Responses for I/3 Octave Spectral Analysis

Note each octave is covered by three filters. Centering filters at 500 Hz,

1000 Hz, 2000 Hz, etc., is arbitrary and not absolutely necessary. This type

of spectral analysis can be performed relatively quickly due to the minimum

number of points necessary to cover a broad frequency range. However, its

bandwidth becomes quite broad quickly and it might find its largest application

in the "quick look" type analysis.

Experience has recently been gained at Aerospace Corporation with the

use of a variable bandwidth power spectral density program. Although it is

difficult to compare directly with a constant bandwidth procedure, time reduc-

tions of a factor of 4 have been experienced employing bandwidths which are

acceptable to the data analysis engineer. Thus, for the example, the time

would be
160

T = _ = 40 s ec
4
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4. 4 A SPECIAL DIGITAL STATISTICAL
CORRELATION SYSTEM

This system is basically a general purpose high speed, medium scale,

digital computer with a special attachment to allow very high speed corre-

lation (and other similar) computations. The machine has a basic machine

cycle of 1.75 _sec which makes it slightly slower than an IBM 7094.

However, a special "multiply-add box" which is attached to the basic com-

puter is capable of performing the multiply-add loop in this same time of

1.75 btsec.

The multiply-add box has its own separate core memory of several

thousand (exact amount unknown) 16-bit words. The multiplication is per-

formed on 16-bitwords; however, the accumulator is 32 bits for avoiding

overflows. Time estimates have been made of an 800 point correlation

function based on a sample size of 8000 data points as requiring less than

13 seconds. This should be about 2.0. 3 seconds for'the m = 1000 , N = 10,000

example. This is extremely fast, almost ten times the speed of a typical

large scale computer for basic correlation and spectrum computations. The

ability to handle large amounts of data is facilitated by a disk file storage

device to provide relatively high speed access to large amounts of data points.

Note that the computational procedure followed by the multiply-add box

system is a straightforward evaluation of Eq. (4. I). The high speed obtained

is strictly by special purpose hardware, not by special computational proce-

dures. However, the high speeds for the specialized correlation multiply-

add loop are obtained at reasonable costs as compared to a large scale digital

computer. These systems provide some general purpose computing capability

in addition to the specialized high speed correlation and spectral computational

capability.
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4.5 CONCLUSIONS AND RECOMMENDATIONS

A number of methods for the digital computation of correlation and

spectral density functions have been described. The optimum choice of a

method depends heavily upon the specific application but certain over-all

comparisons can be made. Table 4.3 is a summary of estimated computa-

tional times for most of the methods discussed in the previous sections.

Table 4. 3 Estimated Computation Times for Correlation

and Spectral Density Computations

I
I
I

I
I

I
I

Correlation Direct Spectral ]')ensity

N = 10,000 and m = 1000

Basic Method 160. 0 sec. Ordinary Fourier 1600.0 sec.

Transform

Factoring 12.9 sec. Cooley-Tukey 15.2 sec.

Fourier Transform

Eight Level Recursive Filter57. 8 sec. 168.0 sec.
[_uantization (7 point)

One Bit ZZ.Z sec. Single Tuned Filter 136.5 sec.

Quantization

Half Clipping ?6.7 sec. Variable Bandwidth 40.0 sec.

Sum of Squares 93. 3 sec. Basic Filtering 441.0 sec.

Special CoInputer 20. 3 sec.

I

I
I
I

I

The time estimates quoted for the correlation or spectral density functions

can be considered as the total time required for obtaining both functions. This

is because of the fact that the usual numerical Fourier transformation required

to obtain a spectrum from a correlation function, or vice-versa, consumes a

negligible amount of computational time.
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One must exercise care in the interpretation of the times quoted in

Table 4. 3. In some cases, the analysis bandwidth and record lengths are

not exactly the same. For example, the variable bandwidth spectral density

computations increase analysis bandwidth with frequency. Thus, one must

decide for a specific application as to what would be the necessary analysis

bandwidth if a constant bandwidth analysis is used and what would be suitable

for a variable bandwidth analysis. Then a more accurate comparison can be

made.

The direct Fourier transformation procedures essentially give the

narrowest possible resolution. If a correlation approach was employed to

obtain the narrowest possible bandwidth, computation time would increase

proportionately. For the Cooley-Tukey Fourier transform, the number of

data points must be a power of two. Other numbers can be handled but the

computation time remains essentially constant until a given power of two is

exceeded, at which point the execution time will roughly double. In the case

of direct filtering techniques or the ordinary Fourier transform method, the

computational time can be reduced by omitting computations for specified

frequency points.

Other factors should be taken into account. Many operating programs

are available for the standard correlation computations and Fourier transform

relations for the spectra. In general, this procedure is straightforward to

program. The methods based on extreme quantization sacrifice some informa-

tion in the data and also can be expected to require additional programming

effort. The technique which factors common terms out of the data possibly

requires the largest amount of programming effort. The basic filtering methods

are generally straightforward to program after a filter characteristic has been

decided upon.

Figures 4-9, 4-10, and 4-11 present plots of computational time for

various numbers of data points (record lengths) for three values of analysis
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bandwidth (maximum lag value). Times for the variable bandwidth methods

are not included since they can not be directly compared. It would be

necessary to plot these times as functions of other parameters. One should

keep in mind that these plots are for time estimates and should be used as

guidelines only when comparing methods or evaluating computational times.

Note that other protions of the program execution time such as data input,

and preparation of results for plotting are not included. For relatively

small amounts of data these parts of the program require as much, and in

many cases more, computational time as the primary computations.

Also, other involved aspects of the program are not included in this

evaluation. For example, if very large amounts of data are being analyzed,

considerable time might be consumed in transferring data back and forth

between storage media such as disc files, magnetic tapes, and basic core

memory. For a given specific application, if customized methods are not

employed which take advantage of the special requirements of the problem,

inefficient processing procedures can easily result.

When all factors are considered, the Cooley-Tukey method of obtaining

a Fourier transform is recommended as the best over-all method for a

general purpose digital computer. The power or cross-spectral density

function can then be obtained by computing variances and covariances of the

transforms of the original time histories and then smoothing to obtain desired

analysis filter characteristics. The method can be extended to arbitrary

(within reason) numbers of data points with modifications to the basic tech-

nique, The correlation function would be obtained as a Fourier transform

of the spectral density function. An adjustment would be necessary to

account for the lag window effect induced by the smoothing of the raw spectral

densitie s.

The programming design necessary for a general program is fairly

extensive but the potential time savings is considerable. By far the most
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savimgs are obtained when the programming is accomplished at the machine

language level due to the heavy dependence on a binary indexing scheme.

If it is necessary to prepare the program in a FORTRAN compiler language

then some efficiency is sacrificed but over-all savings still occur. With a

direct Fourier transform method, considerable flexibility is available in

the selection of smoothing procedures or equivalently, analysis filter shapes.

Also note that for this procedure the computations are exact in that there is

no depdendence on the form of the data or the quantization. Thus, although

extra effort is required for the initial program design and preparation, one

obtains an efficient, flexible computational routine for spectrum and corre-

lation computations.
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5. HYBRID DATA REDUCTION TECHNIQUES

In this section four specific hybrid computer techniques that have been

implemented for the computation of cross-correlation or cross-spectral

density functions are discussed. Hybrid computational techniques are gain-

ing popularity because they permit each separate functional operation in a

system to be "optimized" by selecting that type of circuitry -- analog, digital,

or hybrid-- that is "optimum" for that particular operation, essentially with-

out regard for the other operations.

5. 1 GENERAL PURPOSE HYBRID COMPUTER

One general purpose hybrid computer has been specifically designed

for the processing of random data (Reference ZZ). This device consists of

a general purpose digital computer,of fairly high speed but overall moderate

capacity,plus special hybrid multiply/divide units that accept one analog in-

put, one digital input, and provide an analog output which is either the product

or quotient of the inputs. These hybrid units require I0 _sec to settle to pro-

vide 0.01% accuracy in the output. If less accuracy is acceptable in the out-

put, which may well be the case for many applications, then higher rates are

possible.

In addition to the basic multiplier unit,a high speed (200 KHz max rate)

analog to digital (A/D) converter, digital to analog (D/A) converter, com-

parator, and multiplexer usually are part of the basic hybrid computing unit.

This equipment facilitates the handling of data in either analog or digital form.

For correlation and spectral computations, direct evaluation of the corre-

lation function followed by a Fourier transform to obtain the spectrum would

most likely be used.

86

I

I
I

i

I

!

I
I

I

I
I

I
I

!

I

I
I

I
!



I

I

l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Information on existing programs for this computer indicates that the

multiply-add loop should be able to be executed in about Z5 _tsec, a 40 KHz

rate. This speed is possible since the control of the computational loop is

performed by the digital computer in parallel with the multiplier. With

typical hardware, which has two multiplier units, two points of the correla-

tion function can be obtained simultaneously to double the rate. Thus, one

obtains an effective rate of 12.5 _tsec which may be compared with an esti-

mated 15.4 _sec for the IBM 7094 operating in the fixed point arithmetic

mode.

The computational loop proceeds roughly as follows, assuming the

data is in a digital form in core memory:

,

Z,

.

Send x. to multiplier directly, xi+ r to multiplier via D/A con-
1

verter

Obtain xixi+ r and send to A/D converter and back to main
memory to perform accumulation. (Alternatively, some analog

averaging device could possibly be attached to accept the products. )

While the multiplication is proceeding, the digital computer is

performing the necessary address incrementing to provide the

next items of data to the multiplier.

The ultimate processing speed,if accuracy is sacrificed,wouldbe limited by

the digital computer cycle time of Z. 0 _tsec. Thus, correlation type process-

ing can be performed at quite high rates with this type of device. This de-

vice is also quite flexible in that analog instruments can be inserted anywhere

in the analysis chain if desired,or the digital computer can be used to initially

convert the raw data into engineering units through the calibrations factors.

5. Z SPECIAL PURPOSE HYBRID COMPUTERS

5. Z. 1 Time Compression Techniques

There are several commercially available correlation and spectral

ana![yzers whose designs feature the use of time compression techniques.
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(For a typical system see Ref. g3.) The spectral analyzers are basically

analog instruments to which a digital time compression operation has been

added. The advantage of this time compression technique, called DELTIC

where delay lines are used for storage, is to provide a speedup of the data

and reduction in the analysis time requirements. The result is similar to

recording the data on magnetic tape at one speed and then playing it back at

a higher speed. The reduction in analysis time is gained as follows:

The scan rate for frequency analysis (Reference 24) is

B
R <-- (5.1)

s--T
s

where

R = the scan rate in Hz per second
S

B = the bandwidth of the analyzer filter in Hz

T = the sample record length in seconds
s

The total analysis time is

DT

T- D _ s (5.2)
R B

s

where D = the frequency range of the analysis in Hz.

up by a factor of N, T
$

a factor of N.

If the data is speeded

is reduced by a factor of N and D is increased by

' D'T =T /N , =ND
s s
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To maintain the same spectral resolution and uncertainty, the analyzer filter

bandwidth can he increased by a factor of N.

B' = NB

Thus, the scan rate increases by the square of the speedup factor.

R' - B' _ NB N Z R
s T' T /N- s

$ s

However, the total analysis time is reduced only by the speedup factor.

D' ND I
T'- - - T

R' N 2 Ns R
s

The time compression circuit operates by feeding the analog signal

to be analyzed to anA/D converter. The output of the A/D converter is fed

to digital storage. For analysis, the data is read out of storage in a frac-

tion of the time that was taken to read it in. This data is then run through

a D/A converter to obtain the time compressed analog signal for further

processing. Two distinct versions of hybrid computers using time com-

pression techniques are available. One employs magnetic core storage and

the other uses recirculating delay line storage. One disadvantage of present

versions of this type of computer is that they have such limited storage that
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frequency analysis is performed with BT products of only one. Thus, the

uncertainty error (see Section 7) is horrendous unless special techniques

are implemented. The technique most frequently used to reduce the un-

certainty is to analyze a large number of sample records and average the

results.

Two commercially available correlation analyzers employ this time

compression technique. One has magnetic core storage and the other has

delay line storage. The correlator using magnetic core storage works

similarly to the frequency analyzers. The analog data is digitized, time

compressed, converted to analog form, and analyzed in analog circuits.

An analog multiplier and an analog integrator are used. The time delay

operation is performed during the readout of the time compressed data

while it is still in digital form.

The delay line correlator performs all of the analysis operations on

the digitized data. The analog data is digitized and read into storage. Then

it is read out of storage at a higher rate than it was read in. Time delaying

occurs during the readout process. This data is input to a digital multiplier

whose output in turn goes to a digital integrator.

5. 2. 2 Delta Modulation Techniques

Delta modulation is a simple form of pulse code modulation. The output

of the modulator consists of a series of constant magnitude, constant width

pulses. Only the polarity of the pulse is variable, and it is controlled by the

sign of the time derivative of the input signal. Figure 5-1 illustrates the

operation of a delta modulation system. This delta modulation technique

and a modification of it to obtain dc response (delta Sigma modulation) are

used in hybrid analog computers for function generation, storage and time de-

lay generation. See References 25 and 26.
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x(t)

×(t) ,

x(t)

Delta

Modulator
x(t)

Figure 5-I. Delta Modulation Pulse Code

Function generation is accomplished by creating the basic function ydx.

The pulse output shown in Figure 5-1 is a discrete representation of the time

derivative of x(t).

ax (s. 3)_ ---- CU
At x

where

c = a constant of proportionality

u = rectangular unity height, constant rate pulses
x

To reconstruct x(t), one merely integrates the pulse train
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f dt = Af__ dtx(t) = c u x (5.4)

To multiply two data signals x(t) and y(t) one modulates x with Z_y and
' At

Ax
sums with y modulated by _-. This sum is then integrated.

xy = x + y "_ dt (5.5)

The block diagram for implementing a correlator based on Eq. (5.5) is

shown in Figure 5-2 .

The actual correlator constructed on this principle used several

simplifications to reduce the required circuitry (Reference 27). The block

diagram of the circuit used is shown in Figure 5-3. The x(t) data signal

is converted into the previously described simple pulse code. The pulses

are then delayed in a shift register and multiplied against the analog signal

y(t) . The multiplication is very simple since all that need be accomplished

in the multiplier is to switch the polarity of y(t) according to the polarity of

the time derivative of x(t - T) as represented by the pulses coming out of the

shift register. The product is then integrated to obtain the correlation func-

tion.
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5. 2. 3 Analog Sampling Technique

One commercially available hybrid correlation analyzer (Reference 28)

operates by taking analog samples of the two signals to be correlated. The

sampling circuits are controlled by a common clock pulse generator. The

time delay is created by delaying the clock pulse to one of the two sampling

circuits. The sampling circuit outputs feed into a time-division multiplier (see

Section 3}and the output of the multiplier is connected to a simple RC integrator.

The block diagram of this type of analyzer is shown in Figure 5-4.

x

y ,,

Clock}

" " " • ' t

Sampling
Circuit

I -

i Sampling _Circuit

HDivision Smoothing Normalizing

Multiplier Circuit Circuit

R (T)
xy

Figure 5-4 Analog Sampling Hybrid Correlator

This computer approximately implements Eq. (2. 3), the equation for

the computation of a correlation function from discrete data. The major

difference, as can be seen below is that T is continuously variable. (In the

actual circuit, the products are also modified by the weighting function of

the smoothing circuit. }

N

^ =1_
Rxy('r) N i=l

x(iAt) y (fAt + v}
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Because of the design of the analyzer, only analog (pulse height) samples

are required. Thus no A/D conversion is necessary and only relatively

simple circuits are required to perform all of the operations.

There are several interesting features of this analyzer. First, a

clock pulse rate much less than twice the highest frequency is used. From

sampling theory, one would expect samples to be taken at a frequency of at

least twice the highest frequency of the data to avoid aliasing. This ana-

lyzer takes samples at a low rate, throwing away the information between

samples much like the decimation scheme discussed in Section 4. The

actual limitation on the highest frequency t]at can be properly analyzed is

then one of how closely in time that the two data channels can be sampled

(pulse rise time and jitter). This limitation effectively sets the sampling

rate in terms of usual sampling techniques.

Because this analyzer uses time division multiplication it is fairly

easy to simultaneously compute the cross correlation functions between

one channel and several others. Data samples in the common channel drive

a pulse width modulator. These width modulated pulses are then used to

sample the height of the other data channels. Theoretically there is no

limit to the number of channels that can be sampled. The area out of the

sampling circuits in each data channel is proportional to the product of the

amplitude in that channel (pulse height) and the amplitude of the common

channel (pulse width).

The time delay is created by varying the relaxation tinle in a mono-

stable multivibrator. The clock pulse triggers the monostable and the trail-

ing edge of the monostable output is used to pulse a sampling circuit in the

second data channel, Since the clock pulse also triggers a sampling circuit

in the first data channel, the second data channel is delayed in time relative

to the first by the amount of time it takes the monostable flip-flop to operate.

This time is varied by changing a feedback resistor.
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5. 3 CONCLUSIONS AND RECOMMENDATIONS

The performance of the general purpose hybrid computer discussed

in this section compares very favorably with the performance of modern

high-speed general purpose digital computers. In fact, from an operational

viewpoint, it is probably more convenient than a general purpose digital com-

puter because this hybrid computer can work directly from an analog tape

and there is not the need to generate large quantities of digital tapes.

Of the special purpose hybrid computers, the analog sample type of

correlator is recommended as the best presently available. This machine

has frequency and time delay ranges that are compatible with both the wind

tunnel and flight test program requirements. Because it has a single time

delay value that is scanned over the T range, it does require an appreciable

time for analysis. This disadvantage is partially regained through this

machines ability to simultaneously compute three correlation functions

(one data channel common to all three computations). The delta modulation

correlator is not being manufactured commercially. The time-compression

type of hybrid analyzers are excellent for high resolution spectral analysis

and could potentially be the best of the hybrid analyzers if they had much

higher A/D conversion rates and greater storage capacity. However, in

their present configurations their performance falls short of the requirements

of both the flight and wind tunnel programs.
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6. APPLICABLE RADAR AND COMMUNICATION SYSTEM TECHNIQUES

6. 1 INTRODUCTION

This section presents the results of a survey of both the radar and

comnmnications fields to determine special techniques used in these fields

that might be useful for satisfying either or both of the dynamic pressure

measurement requirements described in Section 1. Only those ideas that

appear applicable to the dynamic pressure measurement problem are dis-

cussed. This survey was conducted because it was hoped that the techniques

used for analyzing the broad basebands available at typical radar and

comn_unication frequencies would provide a solution to the problem of

analyzing a large number of broadband dynamic pressure channels.

In this section the system requirements are redefined in terms of total

storage and total capacity (bits and bit/sec respectively). Three high capacity

storage techniques, magneto-optical recording, cathode ray tube, and _igh

speed magnetic disc recording are described. Complete cross-correlation

systems employing magnetic drums, film, and electron storage tube devices

are discussed. Finally, a comparison is made of the techniques considered.

6. g SYSTEM REQUIREMENTS

The use of a scale model for wind tunnel dynamic pressure measure-

ments gives rise to data requirements significantly different from those

The two sets of data require-needed for a full scale telemetered flight test.

ments are as follows:

io Wind Tunnel Test Data

(a) Signal bandwidth - 100 KHz

(b) Number of channels - 50 (nominal)

(c) Test duration - 5 to 30 see
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. Telemetered Test Data

(a) Signal bandwidth- 10 KHz

(b) Number of channels - 250 max (perhaps as few as 12)

(c) Test duration - 60 to 120 sec

The total storage and capacity implied by the above requirements is

conveniently expressed in bits and bits/sec, respectively, (without pre-

cluding the possibility of using analog storage). For a signal bandwidth of

W Hz, a minimum sampling rate of 2W analog samples per second would

be required to preserve all the signal information in a given channel. If

the test duration is T D , the minimum number of samples per channel

would be

n = 2 TDW samples/channelS

If each of the samples is quantized to b bits, then the required

single channel storage would be

Sc = 2bTDW bits/channel (6.1)

The corresponding minimum channel capacity (bits/sec) is

S

C =____c = 2bW bits/sec single channel (6.g)

c T D

Finally, if there are a total of N
C

required for the experiment would be

signal channels, the total storage

Stota 1 = 2bNcTDW bits (6.3)
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Stotal

Ctota 1 - TD - 2bNcW bits/sec (6.4)

Experimental studies at M. I. T. have shown that 3-bit signal quantiza-

tion (8 levels) yields correlation functions in excellent agreement with

results obtained using both 8-bit quantization (256 levels) and analog data

(Reference 7 ). For purposes of this discussion 3-bit quantization will

be assumed. Hence from Eqs. (6.1) through (6.4), the storage and capacity

(per channel and total) for the two cases of interest may be readily evaluated.

Case 1. Wind Tunnel Test Data Requirements

W = 100 KHz b = 3 bits N = 50 T D = 5- 30 secC

c

G = N C = 30x106 bits/sec
total c c

C = 2bW = 600,000 bits/sec single channel

S c = ZbWT D = 3 x l06 bits, T D = 5 sec

= 18x106 bits, T D = 30 sec

Stota 1 =NcSc = 150x106 bits, T D = 5 sec

T D = 30 sec
= 900 x 106 bits,

(6.5)

Case Z. Telemetered Test Data Requirements

W = 10KHz b = 3 bits N = 12- 250 T Dc

C = ZbW = 60,000 bits/sec single channel
C

Gtota 1 = N G = 12(60,000) = .72x106 bit/sec N
C C C

= 250(60,000)= 15x106 bits/sec N
C

= 60-120 sec

=12

= Z50
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S = ZbWT D = 3.6 x 106 bits, TD = 60 sec (6.6)
C

= 7. g x 106 bits, T D = 120 sec

Stota I = N S = 43. Z x 106 bits, T D = 60 sec N = IZ
c C c

= 900 x 106 bits,
T D = 60 sec Nc = 250

= 86.4x 106 bits, T D = 1Z0 sec N = lZ
C

= 1800 x 106 bits, T D = IZ0 sec Nc = 250

Comparison of the two cases shows that the wind tunnel test (case 1)

requires both a larger single channel capacity (600,000 bits/sec) and total

capacity (30 x 106 bits/sec) than for the telemetered test (case 2). The

single channel storage for the 5 sec wind tunnel test (3 x 106 bits) is slightly

less than for the 60 sec telemetered test. However,for the 30 sec wind

tunnel test,the single channel storage (18 x 106 bits) is two and one-half

times that required for the 120 s ec telemetered test. Finally, the total

storage required for the wind tunnel test (150 x 106 - 900 x 106 bits) is

greater than that required for 1Z telemetered channels but less than the

storage required for 250 telemetered channels.

For the purposes of this report, the discussion of storage techniques

will be confined::tb:the'requirements imposed by the wind tunnel test (case 1).

As the discussion later in this section will show, an attempt to

achieve the single channel capacity of 600, 000 bits/sec (required in case 1)

would require the most advanced laboratory developed high density digital

magnetic storage techniques (Reference Z7). It also follows that the 50
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signal channels could not be handled by a single digital recording channel

even if multiplexing circuitry could be developed to handle the 30 x 106 bits/

sec total required capacity. Multiple recording channels would be re-

quired (perhaps as many as 50, i. e., one per signal channel).

One means of increasing single channel capacity in an attempt to store

all 50 signal channels in a single recording channel would be to use cathode

ray storage tube techniques (Reference 30). The difficulty with CRT storage

techniques is that they are total storage limited to at best 4 x 106 bits per

tube using the most advanced tube techniques. Hence, if it were a require-

ment to store the 900 x 106 bits corresponding to the 30 seconds test dura-

tion, it would be necessary to use 225 storage tubes. This is clearly un-

acceptable from a cost point of view.

A third technique which combines the high information capacity of the

CRT digital storage technique, but circumvents its total storage limitation,

would be to store the CRT image on film. Since the writing time for a single

4 x 106 bit storage tube might possibly be reduced to one second (Reference 31),

a minimum of 8 storage tubes would still be required to attain the 30 x 106

bits/sec required for case 1. Each CRTwouldbe filmed once per second

for the duration of the test (i.e., 30 photographs per CRT for T D = 30 sec).

The preceding discussion clearly indicates that unless either the total

number of signal channels, or the duration of required test data, or both are

reduced, the most advanced storage techniques would still require multiple

recording channels. Even with multiple recording channels,the total storage

would have to be reduced if tape recording (with even the most sophisticated

high density techniques) were used, due to the unrealistically long tape

lengths which would be required. This will be made clear in the later dis-

cus:3ion of storage techniques.
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6. 3 REDUCTION OF DATA REQUIREMENTS

The total storage requirements for the wind tunnel test data can be

significantly reduced since the minimum record length, consistent with

good cross-correlation measurements, is much smaller than the 30 seconds

test duration. (This of course assumes that the data are stationary.) The

minimum record length is influenced independently by the maximum T shift

in R (1-), the permissible variability error, and the lowest signal frequency
xy

of interest in the individual channels. For the wind tunnel test, the values

of v are expected to be in the range 10 x 10 -6 <T < 3 x 10 -3 sec.
max -- max --

Section 7 shows that record lengths of I0 (or more) times the maximum

time shift, T , yield tolerable bias errors. This rule of thumb yields
max

as a necessary (but not sufficient) condition a minimum record length of

0.03 sec for the largest T of interest. Similarly, Section 7 shows that

max 1

the normalized statistical uncertainty error can be estimated by e -
where B is a measure of the bandwidth of the data and T < 0. 1 T.

max --

Estimating B is a problem for peaked spectra, but the spectra of dynamic

pressure data is relatively smooth with a high frequency rolloff. The band-

width of the data channels is 100tCMz, so for a conservative estimate,B wi.ll

be assumed to be 10KHz. Letting _ = 0. 1

T __

1 1
- = 0.01 sec

B 2 (104)(10-2)

The influence of the lowest signal frequency, f0' on minimum record

length can be approximated by evaluating the error in the estimate of the

temporal variance of a simple sinusoid due to finite record length T. Let
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x(t) = A sin COot

where

_w

COO = 2wf0- T O (6.7)

T O = the period of the lowest frequency component. The tel_poral variance

(for infinite record length) is obviously A2/2. For finite record lengths,

the, temporal variance is

A2 I sin2CO0T 2(1- cos co0T)2 1
x T 2 2CO0T (co0T)2

where the symbol -'_indicates time average.

The error in sample variance is

.(T) - sin 2CO0T (1 - cos CO0T) 2
2CO0T + 2 COoT (6.9)

If we concern ourselves only with the peak values of the two error terms,

then the second term becomes negligible when the record length exceeds
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a few cycles. The table below shows _(T) for several pertinent values

of record length.

Number of cycles

(T/T 0 ) _(T)

2zI/8 0.039

Z_llZ o. o3z

3_I/8 0.025

3-1/a 0.016

4-1/8 0.019

5=1/8 0.015

10=1/8 0.008

Since the lowest signal frequency will, in general, only represent a small

fraction of the total signal spectrum, it is clear from the above table that a

record length of 3 to 4 cycles of f0 should be adequate. For a minimum

frequency of I00 Hz, a minimum record length of T R = 0.04 seconds is

required. Since this value exceeds the record length dictated by the bias

and variability error, a required record length of TR= 0.04 second will

be assumed throughout the remainder of this sectio]a.

Referring to the wind tunnel data requirements (case I), the single

channel and total storage requirements will be reduced respectively to

S =C
c c

Stotal

T R = 600,000 (0.04) = 24, 000 bits/channel

= N S = 50(24,000) = 1.2 x 106 bits
c c
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The.se storage requirements may be easily attained by a variety of storage

devices. However, although the reduction in the record length greatly re-

duces the total storage requirements, the total storage rate will still re-

main at

Ctotal
= 30 x 106 bits/sec (i. e. , 50 channels each having a

storage rate of C = 600,000 bits/sec)
C

It is this requirement which places the greatest demand on the recording

system (i. e. , the need for multiple recording channels). In the following

subsection, advanded storage techniques potentially capable of achieving

comparable storage rates will be briefly discussed.

6. 4 HIGH CAPACITY STORAGE TECHNIQUES

Three recently developed techniques for achieving high capacity

storage are outlined below. The discussion below has been abstracted

from References 27 through 30.

6.4. 1 Magneto-Optical Recording

Studies of saturation digital magnetic recording (Reference 27) have

shown that the major limitation in linear storage density on tape is due to

the; resolution characteristics of the recording medium. In general, in

order to achieve large storage capacities (bits/sec) requires transporting

the medium past the heads at fast speed, and usually implies the use of

disc or drum memories without contact recording, since direct contact is

undesirable in high speed applications due to head and coating wear.
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The major limitation on linear storage density for drum or disc

memories (in which the heads do not contact the coating) is due to the

separation of the playback head from the coating material when this separa-

tion is approximately 0. 0002 inch or greater. This limitation results from

the fact that conventional playback heads are sensitive to the magnetic flux

changes external to the surface of the coating material. This limitation

increases in importance as the resolution characteristics of coating ma-

terials improves.

MAGOP (magneto-optic playback head) makes use of a beam of light

to read the surface magnetization of the coating material without contacting

the coating. Use is made of the Kerr magneto-optic effect, i.e., the optical

rotation that results when light is reflected from a surface which is mag-

netized in the plane of the film and parallel to the plane of incidence. A

new electric vector (Kerr component) is created at right angles and in addi-

tion to the E vector that would result without magnetization. The two

vectors combine in the reflected beam to form a new vector and thus a

rotated plane of polarization. The direction of rotation depends upon the

direction of surface magnetization. The light reflected from the surface

consists of an average light level on which the useful magneto-optically pro-

duced signal is superimposed.

Ablock diagram of the system is shown below (Reference Z7,

Figure 6).

__ Phototube T 1 Differential Amplifier

Light Source 7 \)_% I/_

L2_, //_" i _,,,___ Polarizing Beam Splitter

Coating _ \,_J

Figure 6-I. Functional Diagram of a Magneto-Optical

Playback System
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Light from the source is focused by lens L 1 onto the magnetic coating

filra. A polarizing beam splitter is used to form two beams (polarized at

right angles to each other} from the light reflected from the magnetized

filra surface. Each of the polarized beams may be made to yield a useful

magneto-optic signal by proper orientation of the plane of polarization with

re.,_pect to the plane of incidence. While the signals in the two beams are

180 ° out-of-phase, the film noise components, produced by variations in the

filrn surface reflection, are in phase. By subtracting the outputs from the

two phototubes in a differential amplifier the entire useful n]agneto-optic

signal is retained while film noise (a chief source of deterioration) is can-

celed. The main contribution to noise is limited then to the photo detector

shot noise.

In addition to the influence of the polarization beam splitter on reducing

film noise, new film techniques have been developed which allow transverse

recording, and the combination of these effects has resulted in the ability to

obtain storage densities of 1000-3000 bits/inch using a conventional record

head with a 0. 5 rail head to coating spacing. On the basis of microscopic

ob.,_ervations the recorded magnetization was found to extend only 2 mils be-

yond the record head so that track densities of 100 track/inch are achievable.

Hence surface storage density may be as high as 300,000 bits/inch 2.

Since there is no contact of the coating material, linear recording

speeds of 1200 inches/sec are possible, resulting in recording capacities

of 1.2-3.6 megabits/sec. The technique is applicable to tape, disc or drum

recording, although tape would be less desirable due to the high speed in-

dicated.

6. ,1. 2 Cathode Ray Storage Tubes

The cathode ray storage tube principle offers a variety of techniques

for the storage and/or conversion of electrical or visual information (see
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References 30 and 31). In all storage tubes,information is stored in the

charge pattern on an insulated storage surface (target) placed between an

electron gun and a metalbackplate. Each insulated target element comprises

a miniature condenser between its front surface andbackplate. If the target

surface is composed of photo-emissive elements, then writing may be

achieved by scanning the target with a beam of light instead of an electron

beam.

The writing process consists of establishing a charge pattern on the

target elements either by regulating the number of primary incident electrons

or by control of the number of secondary electrons leaving the target through

the use of a collector electrode. In the reading process the elementary con-

densers of the target are scanned by an unmodulated primary electron beam

giving rise to potential shifts at each element which in turn result in available

output signals in either the backplate or collector circuits.

Several of the variety of methods for applying input signals to the

storage tube during writing and extracting output signals during reading are

indicated in Figure 6-2. (See Figure 9, Reference 30.)

The following important operational characteristics are available in

various storage tubes (not all in the same tube though):

I. Signals may be stored in analog or digital form.

2. Writing and reading may be performed by the same

electron gun.

3. Simultaneous writing and reading can be accomplished

by using separate guns mounted at opposite ends of the

tub e.

4. Readout may be designed to be either destructive or

nondestructive.

5. Signal bandwidths of 3 to 6 MHz ha.ve been achieved.

108

i
I

I
I

I

I

I

I
I

I

I
I

I

I
I

I
I

I
!



I

I

I
I
I

I

I

!

i Cathode Modulation VK

--- I --

D.

Scanning - Velocity___
Modulation Input
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(also output)

_ GI

Primary Current

Modulation Input

i ±
m

I
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Methods of Applying Input Signals to,

a Storage Tube.

K cathode

A accelerating annode

C control grid

D deflection plates

G collector

or Obtaining Output Signals from,

T insulated target

P backplate

ipr primary beam current

ic collector current

Figure 6-2. Functional Diagram of a Cathode Ray Tube
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In addition, the following input-output relations can be achieved:

a. Electrical input -- Electrical output

b. Electrical input- Visual output

c. Visual input- Electrical output

d. Visual input- Visual output

One of the shortcomings of cathode ray storage tubes has been their

limited total storage capability. However, recent advances in the cathode

ray art have resulted in tubes which permit the display of 4 x 10 6 resolv-

able beam positions (an array of 2000 x 2000) with adequate guard bands to

prevent crosstalk (Reference 31}. Read and write rates from 4 x 106 bits/

sec (assuming digital storage) to perhaps 12 x 106 bits/sec (assuming

analog storage with eight distinguishable levels), can be achieved.

6.4.3 High-Speed High-Capacity Magnetic Disc Recording

In general, the achievement of high bit packing densities for noncontact

magnetic recording (associated with high-speed high-capacity storage) re-

quires the use of minimum recording medium thickness, minimum trans-

ducer to surface spacing, and awell designed pole tip configuration whose

magnetic influence upon the recording medium is sharply defined in both

the writing and reading process (see Reference 32).

With the advent of air bearing gliding head techniques it has become

possible to operate transducers within Z00 to 300 microinches from thin re-

cording media.

By combining this technique with improved pole tip design, the De-

velopment Laboratory of IBM General Products Division, San Jose, California,

has developed disc recording transducers which have achieved linear storage

densities of 520 bits/inch with a track speed of 1200 in/sec beneath the
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transducer yielding a storage capacity of 625,000 bits/sec. Track densities

of 50 track/inch have been achieved.

6.5 CROSS-CORRELATION TECHNIQUES

For purposes of this study it is convenient to initially classify radar

and communication system cross-correlation techniques into two broad

categories:

a. matched filter techniques

b. nonrnatched filter techniques

The reason for this is simple. In radar and/or communication sys-

ter_ts it is often the case that one of the two signals to be cross-correlated

has a temporal waveform which is known a priori. Starting with this sup-

position it follows that the cross-correlation of an unknown signal x(t) with

a k:aown signal y(t) is obtainable as the output of a linear filter whose im-

pulse response is "matched" to y(t). This result arises from the simi-

larity between the correlation integral and the convolution integral of linear

filter theory. The cross-correlation function of x(t) and y(t) is

Ryx(T ) = lira _ x(t) y{t - T) dt
T'_oo T

Now if x(t) is the input to a linear filter with impulse response h(T) then

the output z(v) is given by

oo

z(v) = f_ x(t) h(T - t) dt
(3O
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In order to make these two integrals identical all that is required is to set

h(T - t) = y(t - _'), i.e., h(u) = y(-u) . A filter with this impulse response

is said to be matched to y(t). If y(t) begins at t = 0 and has a duration T,

then the impulse response of its matched filter would not be physically

realizable since h(t) cannot be nonzero for negative t. This situation can

be corrected by simply adding a delay of T seconds into the filter. The only

effect this has is that it delays the cross-correlation function at the output by

T seconds. Thus the output of the matched filter contains the entire cross-

correlation function for all values of T.

Though the matched filter technique offers a means of obtaining the

entire cross-correlation function as the temporal output of a linear filter,

it is not easily made amenable to the problem at hand; namely cross-

correlation of two unknown signals. Hence no attempt will be made to de-

scribe the various matched filter implementation schemes.

However, there have evolved a number of radar processing techniques

which allow for the cross-correlating of a priori unknown signals from two

or more independent channels. Several of these techniques, which differ

in one or more basic respects, and which are representative of present

technology, will now be briefly described.

The major difference in the various cross-correlation systems is in

the form of signal storage employed. The three techniques to be considered

are

I. magnetic drum storage

2. film storage

3. cathode ray storage tube

Relative signal delays can be achieved by

a. delay lines
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b.

C,

multiple playback heads on a magnetic drum

shifting relative positions of film transparencies

Signal multiplication and integration are normally achieved by using

a mixer followed by a narrowband filter. Optical multiplication is achieved

by an overlay of two transparencies, on each of which is stored one of the

two signals being multiplied. A third technique makes use of an analog

electron beam tube multiplier.

6. 5. I MaGnetic Drum Storage Pulse Doppler System

The syste,n is based on the pulse-doppler principle where short sam-

ples of coherent echo pulses are recorded and stored on a rotating magnetic

drum. A block diagram of the entire system is shown in Figure 6-3.

In this technique a replica of a transmitted pulse is stored in a re-

circulating delay device in which the delay is equal to the transmitted pulse

width I-.

A repetitive playback of the stored replica of the transmitted pulse

into the mixer MI and filter FI gives a complete cross-correlation between

each transmitted pulse and the entire signal present at the receiver between

one transmitted pulse and the next. Each playback constitutes a "look" at

the receive signal in the next successive range gate. Each new transmitted

pulse replaces the previous pulse in the recirculating delay device. In the

radar problem the desire is to cross-correlate a number of successive trans-

mitted pulses separately with the received signals from each range gate.

This is achieved by use of the sampling filter and the storage drum whose

rotation is synchronized to the transmitter pulse repetition frequency. For

a moving target: in any range cell,the sampled bi-polar video output of filter

F1 will exhibit the doppler frequency in the form of echo height modulation

on successive pulses. Due to the synchronous drum rotation, successive

I13
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pulse sampled returns from a given range gate will be stored adjacent to one

another on the drum. The stored pulses consist of a carrier signal on which

the doppler frequency appears as amplitude modulation. Since the desired

radar information is contained in the modulation, the output from storage

has to respond only to the modulation envelope.

If the radar integrates for T seconds with a pulse repetition frequency

f ,the number of samples stored for each range gate are
r

n =f T
s r

Since these pulses are stored in an interval of T seconds on the drum,

the pulse width out of the sampling filter must be

T T

s n f T
s r

If the pulse width is T, the number of range gates is

1
m -

r f T
r

The output pulses which are read off in T seconds will experience a

multiplication in doppler frequency of
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s r T

To determine the output doppler frequency,the output signal from the

drum is mixed in M2 with a local oscillator (L. O. ) whose frequency is

scanned through the doppler interval required. FOl: each revolution of the

drum,all range gates will be "sampled" for one doppler frequency. In suc-

ceeding revolutions each range gate is displaced around the drum at the

rate of one stored pulse width per revolution and all "sampled" for the next

adjacent doppler frequency. In a time T, all range gates will have been

displaced by one range gate width and all doppler frequencies up to the pulse

repetition rate will have been sampled. At this point the local oscillator

will recycle and the process will be repeated.

One final note with respect to the sampling technique. Since the sam-

pling filter samples each range gate at the rate of the p. r. f. , the p. r. f.

should be chosen at least twice as large as the highest anticipated doppler

frequency to ensure getting at least two samples per cycle.

Applicability

If we disregard the output operations employing the swept L. O. , the

remainder of the system (with modifications) would appear to be applicable

to the cross-correlation of arbitrary signals. The major problem areas

would be the storage rate (capacity) and the total storage volume limitations

of the drum. These questions will be considered in further detail later in

this section.
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6.5.2 Film Storage Electronic System

A second type of radar cross-correlator which uses film as a storage

medium makes use of the known doppler history of the signal returned to

a moving radar from a fixed target, as a function of range and azimuth.

The return pulses are received coherently and heterodyned down to video

with a constant offset frequency. The coherent video is recorded on film

using a cathode ray tube as indicated in Figure 6-4.

Recording
CRT

Lens

Delayed

Range

Sweeps

Range

Film

Processor

Figure: 6-4. Block Diagram of a Film Storage System

For any "target the doppler history is contained in the amplitude modula-

tions of the video envelope. This history is recorded as spot intensity on the

recording film.

After the, film is processed, the raw data is read out orthogonally us-

ing a flying spot scanner as indicated in Figure 6-5.
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CRT

Flying Spot
Scanner

÷

Horiz.

Vert.

Sweeps

Figure 6. 5.

Film

Droc.

--[---

I

I

I
Azimuth Photo Mult.

CK h°t°[Vide° I
Amp.

Range Mult. I

Block Diagram of a Film Readout System

I

I

The flying spot scanner raster scans and illuminates the film. The

light transmitted through the film transparency contains the signal informa-

tion in the form of intensity modulation. This intensity modulated light is

amplified by the photomultiplier tube.

The output from the photomultiplier-video amplifier is then cross-

correlated with a predicted doppler history which is obtained from a swept

oscillator as shown in Figure 6-6.

I

!

I

I

O_ [ Video
/Amp.

Photo

Mult.

t UNarro w----Mixer I IBandpass

i ' ]Filter

Swept 1Osc.

= Output

I

!

I
I

Figure 6-6. Block Diagram of a Correlation System I

I
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Appli c ability

This technique could be applied to the cross-correlation of two unknown

sigvals by replacing the swept oscillator by the delayed output from a second

channel which could also have been recorded and read out by the above out-

lined techniques.

6.5. 3 Electron Storage Tube System

A third technique makes use of a cathode ray storage tube to store the

products of the two signals to be cross-correlated. Due to the large signal

bandwidth (100 KHz) and hence, high data rates involved, it seems reason-

able to assume that the signals to be cross-correlated will be stored in ana-

log form. In handling the data from 50 signal channels, multiplexing tech-

niques are called for in an effort to reduce the cost of the storage system.

In theory, if each signal has a bandwidth W Hz, then it is only necessary to

sanaple each channel 2W times per second. However, this assumes that the

signal will be reconstructed by passing the successive samples (appropriately
sin (TrWt)

delayed) through a filter having an impulse response of the form wWt "

In practive, in order to avoid the implementation problems associated with

such an approach, each signal should be sampled at a rate of 4W to 5W sam-

ples per second. (References 33 and 23.)

For a sampling rate of 4W and a signal bandwidth of I00 KHz each

channel must be sampled at a rate of 400,000 per second. Since present

storage tube technology is limited to perhaps 4 x 106 (i.e., 2000 x 2000)

re,_olvable beam positions in a writing time of one second, a single tube

should be capable of storing in analog form the multiplexed signals from

ten channels, Hence, a total of five storage tubes would be needed to

achieve the required storage rate for simultaneously recording 50 signal

channels. Each tube has sufficient storage to handle one second of sampled

test data concurrently from ten signal channels.
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Since as discussed earlier, it is only necessary to store a record

length of 0.04 second for each channel, it follows that each storage tube

need only utilize 160,000 beam positions (i.e., ten channels, 400,000

samples/sec and T = 0.04) for initial data storage.

A considerable reduction in tube cost can undoubtedly be achieved by

reducing the tube storage requirement from 4 x 106 to 160,000 resolvable

beam positions Furthermore, the assumed storage rate of 4x 106• samples

per second would be more easily achieved with fewer resolvable beam posi-

tions. While the larger number of resolvable beam positions would in-

crease the tubes' flexibility as a computing device, it would appear that

from the point of view of availability, reliability and cost effectiveness the

lower tube storage volume is preferable.

Since the signals are stored in sampled analog form, the required

cross-correlation (with finite record length)

x(t) y(t - v) dtRyx(T) - T -"r

may be approximated by the summation

MWT

^ 1 Z x(tkl Y(tk -
Ryx{V) = MW(T - T) k=_=MWv

where MW is the number of stored samples per second,

k
t k = t O + _ (t O is arbitrarily set equal to zero)

= t o + kA
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I
I and T- _W-_A

I where A : _W and _ is an integer

I For M = 4, W = 100 KHz, and T = 0.04 second there are 16,000

product pairs to be summed for each value of T. A single storage tube

I having 160,000 resolvable beam positions could store all the product pairs

for ten separate points of the cross-correlation function. A tapped delay

I line is used in .conjunction with a sampler and multiplier to achieve the

multiplexed product pairs for each of the ten values of 1-. The schematic

I diagram (Figure 6-7) illustrates the technique for obtaining and storing

these product pairs.

I Storage

[Surface

i x(t) qMultlpher I/

, T .dI - l

I
I

I

y(t)

Sampler ___ Timing and De-
_flection Circuits I

y(t -"rlO)

Tapped Delay Line (Fine Delay) l

Figure 6-7. Functional Diagram of a Correlator Using an

Electron Storage Tube

I
I
I

I

The signals x(t) and y(t) are assumed to have been previously sam-

pied and recorded. In addition to the fine delay increments provided by the

tapped delay line, a gross variable timing delay can be inserted in either

channel to change the T interval on successive replays.
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By properly synchronizing the tube beam deflection circuits with the

sampling circuits, the 16,000 product pairs for each of the T delay channels

can be stored in 40 columns (400 beam positions per column). In this way

the readout and integration of the stored product pairs will be greatly facil-

itated.

If the stored samples of x(t) and y(t) are played back at the same

rates at which they are recorded,then both the sampler and multiplier must

be capable of operating at 4 MHz rates. Only analog multipliers can be

considered for such operating rates. Several methods of achieving analog

multiplication are listed below:

l. Quarter square multipliers (Reference7 , page 43}

a. Square law vacuum tube

b. Beam deflection square law

c. Diode network

Z. Electron beam tube (Reference 34)

3. Time Division (Reference 35)

Methods lb, 2, and 3 are all capable of achieving the required multiplication

rates. Of these, the time division technique (Reference 35) appears to be

more compatible and certainly less costly than the electron beam tube multi-

pliers. The time division multiplier, described in detail in Reference 35 ,

makes use of a Mark/Space modulator, and has achieved accuracies of less

than one percent with mean sampling rates of 3 MHz. The use of higher

speed transistors would allow the sampling rate to be increased to the re-

quired 4 MHz.

Since in this discussion the sampled values of the signals x(t) and

y(t) are assumed to be replayed at the same rate as they were recorded, the

product pairs for allten v values will be stored in a time interval of the
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order of 0.04 second. However, there is no reason that the recorded sam-

ple values of x(t) and y(t) cannot be played back at a reduced rate. The

required rate of multiplication and sampling would be accordingly reduced,

thereby resulting in simplified multiplier circuit design and sampler

synchronization problems. If the recorded sampling interval A is in-

creased to MA on playback then the time delay spacings on the tapped de-

lay must also be increased by a factor of M. The time required to record

all the product pairs will likewise be increased by a factor of M.

In either case, once the product pairs are stored, the process of

reading out and integrating the product signal for each value of 1" can be

accomplished by a variety of standard approaches (References 2,7, and 36).

If the product signal is read out in the same time scale as the originally

sampled signals, then an analog integrator having a time constant of 10T

cou![d evaluate successive values of R{T) in approximately 0.4 second so

that 2-50 points would require 100 seconds to evaluate.

The system as described uses only one multiplier and one integrator.

The computation time could be significantly reduced, if need be, by the use

of parallel integrator circuits.

6.6 CONCLUSIONS AND RECOMMENDATIONS

In principle the three techniques presented could all be made suitable

for the cross-correlation or arbitrary random signals such as those present

at the transducer outputs in the wind tunnel measurements of dynamic

pressure.

In the magnetic drum approach, it is the limited number of storage

positions on the drum circumference rather than the storage rate which

necessitates the use of separate recording tracks to handle the required 50

signal channels. Recording sampling rate bandwidths of 6 to 12 MHz appear
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to be feasible; however, a practical value for the number of resolvable

circumferential pulse positions per track appears to be of the order of

60,000 - 90, 000 (Reference 37). Since a signal record length of 0.04 sec-

ond requires 16,000 analog samples, a single recording track would re-

quire 32,000 storage positions for 2 channels and 64, 000 storage positions

for 4 channels. Assuming a storage density of 1000 pulses per inch, a

drum diameter of approximately 20 in. would be required to handle 4 channels

on a single track. The 4 channels could be stored by using 4 separate write

heads located at 90 ° intervals around the circumference, or by multiplexing

the channels and using a single write head. In the multiplexed case the drum

speed would have to be four times as fast to maintain the same sampling

rate per channel. The use of separate read and write heads for each channel

without multiplexing would appear to be preferable since the T delays would

be varied by a relative rotation of the heads.

As noted earlier, the film storage technique could be adapted to the

cross-correlation of two arbitrary wideband signals by replacing the swept

oscillator by the delayed output from an independent duplicate film storage

channel. The attainable recording bandwidth with such a system should be

comparable to that for the cathode ray storage tube provided the total storage

does not require mechanical film transport during recording. This is pred-

icated on the assumption that the conventional CRT employed in this technique

is of comparable quality to its storage counterpart. The advantage of this

technique (when compared to the cathode ray storage tube approach) is that

it provides permanent storage. The presence of the optical subsystems

would probably make this technique more costly to implement and maintain

than either the drum or storage tube approach.

The storage tube technique is clearly applicable, as presented, to the

cross-correlation of many arbitrary wideband signal channels. Although

each storage tube was assumed to store the sampled signals for only 10
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channels, the synchronization of the multiple storage tubes should not be

difficult to achieve. In this way the system would maintain the flexibility

to cross correlate the signals from any two channels. Although each of the

three techniques presented will permit synchronization, the storage tube

technique would appear to be superior to either the drum or film storage

techniques. On the other hand, with conventional tape recorders, it is not

presently feasible to achieve sufficient synchronization to allow the accurate

cross correlation at high frequencies of signals stored on separate recorders.

The seriousness of this limitation will depend upon the relation between the

number of channels which can be multiplexed on a single recorder and the

required number of cross correlations.

It should be noted that even with rather coarse quantization (3-bit}

and very short record lengths (0.04 second}, the three above techniques just

barely satisfy the operational requirements. While these techniques could

be converted to the analysis of dynamic pressure measurements, it does not

appear that they offer any major advantages over existing techniques.
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7. MEASUREMENT ERRORS

This section describes the errors that occur in the actual measure-

ment of cross-correlation and cross-spectral density functions. Both the

statistical uncertainty errors occuring from analyzing data samples of

finite duration and finite bandwidth and the errors associated with practical

hardware are covered. The hardware errors apply to all items in the

measurement system, from the transducer through the analyzer. Ordinary

hardware errors such as those related to frequency response, amplitude

linearity, etc. are not discussed. For discussion of these types of errors

see References 38 and 39.

Emphasis on the hardware errors is placed on phase errors and those

other errors where the previous theory required extension. I2etailed ex-

aminations of the errors associated with the dynamic phase errors of

magnetic tape recorders and the finite size errors of transducers are con-

ducted because it appears that these two items may introduce the largest

hardware-related errors into the measurements.

7. I STATISTICAL ERRORS IN CROSS-CORRELATION

AND CROSS-SPECTRAL ESTIMATION

The purpose of this subsection is to present the errors in estimating

cross-correlation and cross-spectra caused by finite record lengths, finite

bandwidths, extraneous noise, and other effects which are inherent in the

estimation procedures. It is assumed throughout that the records being

operated upon are samples from stationary, ergodic random processes with

zero mean value.
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7. 1. 1 Cross-Correlation Estimation

Let x(t) and y(t) be sample records from two stationary, ergodic

random processes. If each record has duration T sec, the sample cross-

correlation function is defined by

,'_ 1 fT- T

Rxy(T) - T .- T J0 x(t) y(t + T) dt , 0 < T < T (7. 1)

For negative values of T, the cross-correlation function may be found

from

A ^ 1 ,.T1_-1"

- JO y(t) x(t + T) dt (7. 2)Rxy (-T) = -Ryx(T ) - T T

Therefore we may restrict our attention to positive values of T since

similar error formulas will hold for negative T.

Upon taking the expected value of both sides of Eq. (7. 1), it is seen

that

E [Rxy(V)] : Rxy(V )
(7. 3)

so that R (T) is an unbiased estimate of R (T).
xy xy

estilvlate is given by

The variance in the

17.7



[B.xy('r}] ""x2y(T}] _ RZV = E [R xyh')

T-T

1 /0/ E[x(u) y(u + T) X(V) y(v+ T)] du dv _ RZ(T)xy
(T - T)2

(7 4)

I

I

I

I

I
I

Thus it is seen that the variance of Rxy(T) involves a mixed fourth moment

of x(t) and y(t) which, in general, is quite difficult to calculate. To

simplify Eq. (7.4), assume that x(t) and y(t) are Gaussian random pro-

cesses. Under this condition, Eq. (7.4) becomes

T-T

V[_xY (T)]:_ - T-T) - Y--:7-T
[Rx(D) Ry(9)+Rxy(TI+T ) Ryx(_]- T)] d_]

(7.5)

where

If the maximum value of R (T) approaches the square root of the product of
xy

the autocorrelation functions of x(t) and y(t), both evaluated at T equal to zero
J__ t

IvI%/R (0) R (0)1, then it can be shown (Reference 40)that the variance ofx y

Rxy(Tm) approaches

Z

Rxy(Tm) (7. 6)
V[Rxy(Tm)] = B(T-T )

m

where
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T
m

B

the value of time delay corresponding to the maximum

value of the correlation function

the bandwidth of the signals being analyzed (assuming that

both signals have the same bandwidth)

In many correlation analyzers, division by the variable time interval

(T - T) is replacedby division by the record length T. This results in an

estirnate of Rxy(T) which is given by

_- 1 ff.T-T= x(t) y(t + T) dt (7.7)
Rxy(T) ('r) "_ 0

This estimate is biased, however, as can be seen by taking expected

values in Eq. (7.6).

E xy, I T)E T)('r)] : 1 - _ Rxy('r) (7. 8)

Thus, while the correct functional form is estimated, the amplitude scale

is in error.

In certain instruments, the quantity T is scanned continuously rather

than in discrete steps. This means that an additional error will be present

in tlhe estimate. If the T variable is changed at a rate of k, then the esti-

mate becomes

^ I fT-TI

Rxy(s)(T1) = -T J0 x(t) y(t + T 0 + kt) dt
(7.9)
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T O + XT

where T 1 - 1 + k . Assuming k is small {which is always the case in

practical analyzers} and that kT is equal to or less than the reciprocal of

the highest data frequency, then Eq. (7.9) may be written

1 fT-_l x(t)[y{t + T0) + (),t) y(t + TO)] dt
Rxy(s)(*l ) "--T _ 0

(7.io)

Thus,

T - T 1 kit - T1 )z

E[Rxy(s)(Tl )] - T Rxy(V0) + 2T Rtxy(1"0) (7. ll)

A

Scanning T increases the magnitude of the variance of R (T). An ex-
xy ^

pression is given in Reference 9, page 280, for the variance of Rxy(s}(T);

however, its complexity precludes practical use. But for many cases of

interest it can be shown that when the scan rate is small enough to meet

reasonable bias error values, the increase in variance due to scanning will

be negligible.

Another source of error in correlation measurements is the presence

of noise added to the recorded data. Thus, instead of x(t) and y(t) being

present at the correlation input, the quantities

xl(t) = x(t) + nl(t)

Yl(t) = y(t) + rig(t)

(7. IZ)

are present. It may be safely assumed that nl(t) and n2{t) have zero mean

and are mutually independent and each is independent of x(t) and y(t). Under

these conditions the estimate of R (T) becomes
xy
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^ l fo T-TRxy(n)(T)= -_- x l(t) Yl(t + T) dt (7.i3)

Because of the assumption of independence, it is easily shown that

A T - T

E [Rxy(n) (T)] - T Rxy(T)
(7. 14)

so that no bias error is generated by the extraneous noise. Without going

into the detailed calculations, it may be shown that the variance is given

by

V [Rxy(n )(T)]= 1 - --T (T-T) T- _-
[Rx(V) Ry(v) + Rxy(V + -r) Ryx(V - "r)] dv

.jo ( --.),,,+-_ I - T T (v) (v) + Rx(V) (v) + (v)] dv
Rn2 Rnz Ry(V) Rnl

(7. 15)

Thus, the variance is composed of two distinct parts. One part consists of

the sampling error which is due only to the finite record length while the

second is the contribution of the two extraneous noise sources. Examination

of F:q. (7. 15) indicates that, unless the extraneous noise power is small com-

pared to the signal power, the variance of the estimate will be greatly in-

creased. It is difficult to present a quantitative estimate of the increase in

the error because the correlation functions of the extraneous noise sources

will not be known in general.
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7. I. 2 Cross-Spectral Estimation

In estimating the cross-spectrum, G (f), each record is passed
xy

through a narrowband filter to produce outputs x(t, f, B) and y(t, f, B) where

f is the center frequency of the filter and B its bandwidth. Since Gxy(f)

is generally a complex function, its real and imaginary parts must be esti-

mated separately. Thus, denoting the cross-spectrum by

I
I

I

I,
I

I

I
G {f) = C {f) _ jQ (f) {7. 16)

xy xy xy

the estimates of C {f) and Q (f) are given by
xy xy

Cxy(f) - BT
x(t, f, B) y(t, f, B) dt (7. 17)

1
{f)- I

Qxy B T .Io
x(t, f, B) yO (t, f, B) (7. 18)

where the notation o refers to a 90 ° phase shift in one of the records. Be-

cause of the similarity of Eq. (7. 17) and Eq. {7. 18), it is clear that ex-

pressions for the various errors in each will be similar. Therefore, only

errors in estimating C (f) will be stated below.
xy

Due to the finite bandwidth of the filter, the estimate will be biased

and that bias is given by

b[_xy(f)]
I- ]= E[C (f) - C (f) {7. 19)
xy xv
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This is approximated by

2
B

xy(f) _ -- c,, (f)b[C ] ..- 24 xy

No convenient formulas exist for the variance of the estimate; however, the

variance of either estimate is bounded by

Gx(f) Gy(f)
V[_xy(f) ] < BT (7.20

where this bound is approached as x(t) and y(t) become independent.

For the case where the center frequency of the filters are scanned

continuously over the frequency interval of interest, an additional bias term

is generated. Suppose that during the time interval, T, the center frequency

is changed from f to f +Af. Then the frequency scan rate is

Af
Y - T (7. 21)

and the cross-spectral estimate becomes

,f0 _Cxy(s)(f + Af) - BT x(t, f + _/t, B) 7(t, f+ yt, B) dt

(7. zz)

As was the case in continuous scan cross-correlation, the scan rate will be

small and Eq. (7. 22) can be written as
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^ + Af) =" 1 fo T [Cxy(s)(f BT x(t, f,B) +_/t axIt'f'B)][af y(t, f, B) + _t _y(t,of"f' B)J dt]

(7. Z3)

Upon taking expected values in Eq. (7. 23), it is seen that

f0 T 8y(t, f,B)E[_xy(s)(f + Af)] = Cxy(f) 4-B--_T tx(t,f, B) Of
dt

T 0x(t, f, B) dt+ _ ty(t, f, B) Of (7. 24)

B_T f0 T 2 8x(t,f,B) 8y(t,f,B) dt+ t Of Of

It has not been possible to simplify Eq. (7. 2.4) and express the three

integrals as functions of C (f) and the impulse response functions of the
xy

filters. Further work in this area is required before a complete anaIysis

can be accomplished.

When extraneous noise is additively present at the input to the cross-

spectral analyzer, the recorded data, x(t) and y(t), are replaced by

x l(t) = x(t) + nl(t)

Yl(t) : y(t) + nz(t)

(7. zs)
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The corresponding cospectral estimate becomes

lf0_Cxy(n)(f) - BT xl(t' f' B) Yl(t, f, B) dt
(7. 26)

Assuming that the noise sources have zero mean and are uncorrelated

with each other and with each of the records, it follows that

^ lf0TE [Cxy(n)(f)] - BT
x(t, f, B) y(t, f, B) dt (7. 27)

which means that the noise sources introduce no additional bias error. The

effect of extraneous noise sources on the variance of the estimator is similar

in nature to the effects on the cross-correlation estimate; however, the

analytical expression for the noise error is too complex to be of practical

value.

7. 1. 3 R-C Averaging

Instead of the ideal integrator which was employed in the cross-

correlation and cross-spectral estimation procedures described previously,

an R-C averaging circuit is frequently used. The effect of this type of aver-

aging will be shown below.

For the cross-correlation estimate we have

,4 1 f* -u/K (7. z8)

Rxy(R-C)(T) = K J0 x(T-u} y(T-u+ v) e du
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where K = RC = time constant of RC circuit. Upon taking the expecte'd

value of both sides of Eq. (7. 28) and carrying out the integration, it is seen

that

E[_xy(R_C)(V)] = Rxy(V } [1 - e -T/K ] (7. 29}

This result indicates that while a bias is produced by the R-C averaging,

its effect is restricted to a scale change in amplitude and the functional

form of the cross-correlation is correctly estimated. As was the case in

some of the previous situations, the expression for the variance of the

estimate when R-C averaging is used is too complicated to be of practical

use.

A similar situation exists when R-C averaging is used in cross-spectral

estimation. By direct calculation,the expected value of the estimate is

^ -T/K] (7.30}
E[_xy(R_C)(f)] = Cxy(f ) [1 - e

T

If the bias error in Cxy(f) is small and exp (-_} is small, then their products

will be small compared to either one, and then Eq. (7. 30) may be written as

B 2C'' (f) -T/K

E [ _xy(R- C) (f)] _ Cxy(f) + 24xY Cxy(f) e (7. 31)
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7. 2. PHASE ERRORS

It is the purpose of this subsection to examine the inaccuracies result-

ing i a cross-correlation and cross-spectral density analyses from typical

phase errors in the measurement equipment. These phase errors occur in

every part of the measuring system--the transducers, signal conditioners,

tran,3mission lines, telemetry units, tape recorders, A/D converters, the

analyzers, and the printout devices. These phase errors can be either

static or dynamic (time-varying) in character. To ensure that accurate

measurements are made, these errors must be confined to acceptable bounds

or compensated for in the data reduction process. The following discussions

provide guidelines for evaluating the severity of different types of phase

errors and for error compensation techniques.

7.2. 1 Ordinary Spectral Density and
Autocorrelation Measurements

In ordinary spectral density and autocorrelation analyses, the phase

errors must be split into the static and dynamic components and discussed

separately. The static phase errors introduce no inaccuracies into the

measurement process while the dynamic phase errors do.

Static Phase Errors

For the first case, assume that the measuring circuit has a constant

time; delay error n-. This type of error is encountered in every instrument

in the measuring chain since they all have finite bandwidths. (Of course,

restrictions must be placed on the frequency bandwidth over which the con-

stant time delay approximation is valid for each individual instrument. ) In

general, those instruments having the narrowest bandwidths will cause the

greatest time delay. For example, assume that the response of the transducer
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can be approximated by a simple mechanical oscillator. The phase factor

for this transducer can be written as (Reference 38).

-1
_b(f) = tan

n

(7.3z}

where

_(f) = the phase factor

= the damping ratio

f = the frequency in cps of the measured data

f = the undamped natural frequency in cps of the transducer
n

Equation (7. 32) can be expanded in series form

¢(f) = n
1

3

n 1
+-

5

n

,

(7.33)

If the restrictions f < O. 1 f and _ < 1.0 are applied, then
n

f
n
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!

! The time delay, TO, is a constant under these restrictions since

_ _/= A_
'to- 21rf _'f

n

(7.34)

The autocorrelation function is defined as

T

,/R (T) = lim _-_ x(t) x(t + v) dt
x T-* oo T

(7. 35)

Let the measured signal be

xm(t) = x(t + v0)

where VO is the time delay in the measuring circuitry.

correlation function is now

The measured auto-

I Rm(T) : lim
x

T"* oo

!

T

ZT T

T

_,/
ZT T

xm(t) xm(t + T) dt

x(t + TO) x(t + T O + 1-) dt

(7. 36)
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Let u = t + T O ; du = dt

Rm(T) =
x

1 / T+T0lim 2--_

T-*co -T+T 0

x(u) x(u + T) du

= R (T)
x

Since the process being analyzed is stationary and ergodic, no error

is introduced into the autocorrelation function by computing from (-T + T O )

to {T + V 0) instead of from (-T) to (T). Because the ordinary spectral

density is the Fourier transform (Wiener-Khintchine Theorem, Reference 4D}

of the autocorrelation function, it can be seen that the constant time delay

error also introduces no error in the spectral density analysis.

Next consider the case of a phase shift that is independent of frequency.

qb = k ; where k = a constant (7. 37)

The true spectral density, the two-sided form is used for simplicity, is

J'"]IJ 1S (f) = lim _ x(t) e dt x(t) e jzwft dt
x T-*co T T

(7.38)

where
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S (f) = the two-sided ordinary spectral density function
X

x(t) = the data signal

Let the measured signal be

xm(t) = x{t + k/Z1rf)

Then the measured spectral density becomes

Let

Then

I

I
I

I

I
I
I

I
I

I

x(t + k/2_rf) e

u = t + k/2wf

du = dt

141

(7.39)

T ej 21rft ]
x{t + k/2_f) dt

T

(7. 40)

(7. 41 )



1

!

ST(f} = T--oolim -_LJ_T+k/gTffx(u) e du

!

!

= lim exp (Jk) exp (-Jk) If T+k/gwf u] ,
2T x(u) e -jglrfu d (7.4Z)

T-- co - T+k/Z_rf

[i_ ]x(u) e jzlrfu du

T+k/Z_rf I

= s (f)
x

!

!
Since the measured spectral density equals the true spectral density, it can

also be stated through the Wiener-Khintchine Theorem that a constant phase

error will not cause any error in the measured autocorrelation function.

The above result can be extended to cover the general case where the

phase angle becomes some arbitrary function of frequency

!

!

!

_b(f) = g(f) (7.43}

!

!

!
14Z !

!
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The substitution becomes

u = t + g(f} and du = dt (7 44)
2_f

Since the operation in Eq. (7.40) is essentially a narrowband filtering opera-

tion, g(f0) is a constant in the narrow frequency band about f0" Hence, the

measured spectral density equals the true spectral density. (The fact that

g(f) results in a new constant for each value of f does not influence the re-

sult since a new value of sm(f) is computed for each value of f. ) Again,
x

this means that there will be no error in the autocorrelation function due to

a static phase error.

Dynamic Phase Errors

Dynamic phase errors occur in magnetic tape recorders from non-

uniform velocity of the magnetic tape over the record and reproduce heads.

Let an arbitrary function of time, h(t), represent the dynamic phase error.

The_a the measured data has the form

xm(t} = x[t + h(t)] (7.45}

The measured autocorrelation function is
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_m(T ) _ 1
x ZT

T

xm(t) xm(t + T) dt (7.46a)

T

if x[t + h(t)] x[t + v + h(t + T)] dt (7.46b)
2T T

(R(T) represents an estimate of R(T), the limiting value obtained as T-*co.)

Because h(t) is small (0. Z5 to 1%), Eq. (7.46b) can be approximated by

letting

x[t + h(t)] _ x(t) + h(t) _(t) (7. 47)

x[t + T + h(t + v)] _ x(t + T) + h(t + T) _(t + T) (7. 48)

where only the first two terms of the Taylor series expansion are used and

the dot represents a time derivative (x(t) = d[x(t)] /dt). (See Reference 9)

Then,

^ 1/_Rm(T) .._ --

x 2T T
[x(t) + h(t) _(t)] [x(t + T) + h(t + T) _(t + T)] dt

T

x(t) x(t+ T)dt+ 2-_ f
T

h(t + T) x(t) _(t + T) dt (7.49)

+

T

:_(t) x(t + T) h(t) dt + -_T T
-T

_(t) _(t + T) h(t) h(t + T) dt
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If we repeat our measurement many times, we can find the expected value

of the measured correlation function

Rm(T) "x m: E [R 0")]
x

(7. so)

Separating out the individual components of Eq. (7.49), one finds

]E x(t) x(t + z) dt = Rx(T )
-T

(7. Sl)

and since x(t) and h(t) are independent and stationary

E ] Ix(t) _(t + v) h(t + T) dt- 2T h(t + T) dt
T T

=0

when h(t + T) is

dete rminis tic

(7. 52)

when h(t + T) is
random with

zero mean

where the slash mark denotes a derivative with respect to v

i I

R'IT_ -
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E £(t) x(t + T) h(t) dt -

T

h(t- T) dt ;

=0

when h(t- "r) is
deterministic

(7.53)

when h(t- v) is
random with

zero mean

1E _(t) _(t + T) h(t) h(t + T) dt = -Rx(T) Rh(V) (7. 54)
-T

With a magnetic tape recorder, two types of dynamic phase errors occur

from flutter. The first type of flutter is approximately sinusoidal and results

from rotational unbalances. The second type of flutter consists of band-

limited random noise. Examination of Eqs. (7. 52) and (7. 53) when h(t) has

a sinusoidal form reveals that in taking the expected value of these equa-

tions, one would expect them to go to zero since the phase angle of the sinu-

sold is an unknown random variable and is uniformly distributed about zero.

Thus, for the magnetic tape recorder

Rm(T)x _ Rx(T) - Rx(T ) Rh(T ) (7. 5S)

Davies (Reference 42) shows that for a sinusoidal data signal modulated

by one sinusoidal flutter component when frequency modulation recording is

used, the dynamic phase error is

b sin 2wf3t (7.56)
h(t)- 2wf3
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where

b = the peak flutter amplitude

f3 = the flutter frequency

Obviously, the lower the value of b and the higher the value of f3' the less

will the measured autocorrelation function vary from the true autocorrelation

function.

To determine the effect of dynamic phase errors on the spectral density

function, the Fourier transform of the measured autocorrelation function is

taken.

f oo e- j Z_fVdT
sm(f) = Rm(T)

x X
(3O

f
oo

oo

[Rx{T) - R'x(T ) Rh{V)]
e -j2_fT dT (7. 57)

_co e_J2wf TSx(f ) - RX(T ) Rh(T ) dT
(3O

Thus, the measured spectral density also has a bias error dependent upon

the second derivative of the data correlation function and upon the correlation

function of the dynamic phase error.

7. Z. Z Cross-Correlation and Cross-Spectral

Density Measurements

In the measurement of cross-correlation or cross-spectral density func-

tions, both static and dynamic phase errors contribute to inaccuracies. In

147



the following paragraphs, typical types of phase errors will be examined to

demonstrate the inaccuracies that they cause.

Constant Time Delay Error

The true cross-correlation function is defined as

Rxy(W) = lim _ x(t) y(t + v) dt
T-*co -T

(7.58)

Let a constant time delay error, v 0, be introduced into y(t) relative to x(t).

This could be from using transducers with different natural frequencies as

one example.

ym(t) = y(t + T O) (7. 59)

The measured cross-correlation function becomes

R m(v) = lim -_ x(t) y(t + T O + T) dt
xy T-*co -T

= Rxy(T + v O)

which means that the correlation function has been shifted along the v axis by

an amount of v 0. This error can be easily compensated if we know 1"0

accurately.
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To see the effect of a constant time delay error on the cross spectrum,

let us take the Fourier transform of the measured cross-correlation function

x_ ./'co _y e-j2wfTS (f) = R (T) dv (7.601

(3O

co Rxy(V -jZwfv= + TO) e dT
-OO

(7.60)

Making the substitution u = v + TO , du = dr, one obtains

CO

sm(f)xy= eJZwfT0 j__CO Kxy(U ) e-jzwfu du

= e_zwfT01 S (f)
xy

(7.61)

The cross spectrum is frequently computed by measuring its real part

(cospectrum) and imaginary part (quadspectrum), or the magnitude and phase

fact:or of the cross spectrum

Sxy(f ) = Cxy{f ) - JOxy(f) (7.6Z)

= I Sxy(f)l e - j_xy(f)
(7.63)
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where

C (f) = the cospectrum
xy

Qxy(f) = the quadspectrum

_xy(f) = the phase factor

It can be shown that a constant time delay type of phase error will result in

the following measured values.

Cmxy (f) = Cxy(f} [cos

Qmxy(f) = Qxy(f) I c°s 2_rf'ro -
(7.65)

_bx_(f ) = _bxy(f ) - 2_rfT 0 (7.67}

Constant Percentage Time Delay Error

A constant percentage time delay error can occur in the correlation

analyzer if the time delay mechanism or the readout is improperly calibrated.
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The measured value of the delayed signal is

ym(t + T) = y(t + kv) ; where k = a constant

The measured cross-correlation function with this type of phase error is

R m(T) = lim _ x(t) y(t + kv) dt
xy T-*co - T

Let

u=k7

lim -_ x(t) y(t + u) dt (7.68}
T-*co T

= Rxy(U) = Rxy(kT)

The measured cross-spectral density function resulting when there is

a constant percentage time delay type of error is
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oo R m e_ j21rfa "Sm (f) = (T) dT
xy xy

-00

-j2wfT
R (ka') e dT

xy

Let u = kT and du = kdT

S m (f) : 1 f ooxy _ Rxy(U ) e -jZ'rr(f/k)u du
-00

1
= -- S (f/k)

k xy

(7.69)

Thus, it can be seen that there is a scale factor error introduced as well as

an expansion of the frequency axis.

Constant Percentage Frequency Error

Constant percentage frequency errors occur when the magnetic tape

speed during reproduce differs from the recording speed or when the fre-

quency axis of the spectral analyzer is improperly calibrated. By analogy

to Eq. (7.68),

Sx_(f) = Sxy(kf) ;
where k is a constant (the frequency

calibration error)
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The cross-correlation function measured with a constant percentage fre-

quency error is

x_ f O0 ej2_.f TR (T) = Sxy(kf ) df
oo

1

= --k Rxy('r/k)

(7.70)

so that the constant percentage frequency type of phase error introduces a

scale factor error and a tau axis expansion in the cross-correlation function

analys is.

Constant Frequency Offset Error

Constant frequency offset errors can occur in heterodyne portions of

the measuring circuit or in the frequency spectrum analyzer readout. For

example, assume that there is a 5 Hz offset error. Then the true data at

100, 500, and 2000 Hz is plotted at 105, 505, and Z005 Hz, respectively.

The measured spectral density is

m

Sxy(f) = Sxy (f - fo ) ; f- fo > 0

sm(f)xy = Sxy(f + fo ) ; f + fo --< 0 (7.71)

sm(f) = 0 ; -fo < f < fo
xy
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where f0 is the frequency offset error. This error in the cross-spectral

density can be easily corrected if f0 is known accurately.

When computing the effect of a frequency offset error on cross-

correlation analysis, the Fourier transform of the cross spectrum must

be separated into two parts because the positive frequency portion of the

cross spectrum is being translated in an opposite di.rection to the negative

portion.

I

I

I

I

I

Let

and

Then

J_fO e j Z_rfT f; e jZ_rfT 1Rx_(T ) = Sxy(f + fo) df + Sxy(f - fo) df
OO

I

-(f + fo ) = v ; dv = -df

I

I

f - fo = u ; du = df
I

Rmxy(T) = - f_fo

jZ_r(-V-fo)T
S (-v) e

xy oo jZlr(u+f0)vdv + Sxy(U ) e du

f0

oo jZ_r(-v-fo)T= Sxy(- v) e
fo

dv +
jZTr(U+fo)T

S (u) e du
xy

I

I
I
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and since

0

to Sxy(-V)

j 2_'(-v- f0)'r
e dr= 0

and

0
fo Sxy(u)

j 2_r(U+fo)V
e du= 0

-Ja_fo_f °° -j2_'VT J ;)Irf0"r f0°° eJZ_rUT
R m {T) = e dv + e

xy _' 0 Sxy{-v) e Sxy{U) du

O0

= [cos 2rrf0"r - j sin 2wf0T ] f0 [Cxy(V) + J Oxy(V)] [cos 2WVT - j sin 21rVT]

oo

+[cos Z_rfoT +jsin 21rfoT ] fO [Cxy(U) - JQx'Y(U)] [cos ZIrUT+ j sin Z1ruv]

Inspection of the above equation reveals that the two terms are complex con=

jugates of the form A* + A or (a - jb) + (a + jb). Therefore, the measured

cross-correlation function is equal to twice the real part of either term.
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R m(T) = 2Re[A]
xy

oo

= [2 cos 2_rf01"] /
0

[C {u) cos 2_rUT + Q {u) sin 2_ruT]
xy xy

du

oo

-[2 sin z.f0-]/0 [Cxy(U) s_n 2.uT - _xy(U) cos Z.u,] du
(7.7 2)

O0

= Rxy(T ) cos 2wf0T - [2 sin 2_rf0T ] f0 [Cxy(U) sin 2wuT - Qxy(U) cos ZwuT]

From Eq. (7.72) it can be seen that the effect of a constant frequency offset

error on the cross-correlation analysis is to introduce a cosine multiplica-

tion of the true correlation function plus add a bias error.

ConstantPhase Shift Error

Next consider the case where the measured signal y(t) is shifted by a

constant number of degrees with respect to the measured signal x(t). This

error most frequently occurs in the phase mismatch of cross-spectral density

analyzers. From Eqs. (7. 37) and (7. 39),

Yf,mB(t) = Yf, B(t + _b0/awf)

where

Yf, B
(t) = the data signal passed through a bandpass filter of

bandwidth B and center frequency f.
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The cospectrum can be defined as

Cxyif } = lim 2B--'_
T'-- co T

B-," 0

xf, Bit) yf, Bit) dt (7.73)

and similarly, the quadspectrum can be defined as

Oxyif) = lim ZB--_ xf, Bit) yf, B t + "_T]T--co - T

B-_0

dt (7.74)

The measured cospectrum becomes

Io .C mif) = lim 2B'--"_ xit) t +
xy T-- co - T

B-_0

dt

Removing the bandwidth limiting process, an estimate of the cospectrum is

obtained.

C mif) = lira 2BT xit) y t +
xy T--co T

dt

i7.75)
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where = the cross-correlation function, evaluated at

T = _0/2wf, obtained when both x(t) and y(t)

are passed through narrow bandpass filters

of bandwidth B and center frequency f.

Similarly, an estimate of the measured quadspectrumis obtained.

f, B

The true phase factor is

15A _
q_xy(f) = tan C (f)

xy

and the measured phase factor is

QX_

- 1 = tan 1
q_xym(f) = tan

C m (f)
xy

xy, f, B / Zwf

(,o)]g xy,f,s 77i

-1
tan

*o+_
Rxy, f, B ZTrf

Rxy, f, B
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To evaluate Eq. (7.77) , it is necessary to assume some specific form for

the correlation function. Assume that single-tuned filters are used to com-

pute the cross-spectrum and to simplify the calculations assume that

y(t) = x(t). Then, (from Reference g)

R B(T) = R B(T) = Rx(O) e-blTlxy, f, x, f, cos 27rf0T
(7.78)

where

Zb = the half power bandwidth of the filter

fo = the center frequency of the filter

-1

qbx_(f0) = tan -hi 2 ,ol
e COS

_o_i_%1/ rG/J

tan e
-tan q_O]1

The "q" of the filter is fo/Zb, hence
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-1
qbx_{fo) = tan lie

and if q > 1, as is the normal case

qbxrny(f0) = __b0

As is expected, the phase factor is in error by an amount qbO. [qbxy(f O)

should have been zero since we assumed y(t) = x(t).] Now the effect of a

constant phase error on the magnitude of the cross-spectral density will be

determined.

]21 2= xy, i, B (f) xy, f, B (f)IxY I

iSx>l:Rxy,B{ Rxyf, B
I1. 'IT g%.!i

l 21rf

Assume, as before, that x(t) = y(t} and the analysis filters are of the single-

tuned variety.
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Rx, f, B (°)

B
cos 2wf

R B(O)X, f,

B

"IT

If _0 <'2 and q > 1,

R B(O)X, f,

B

Therefore,
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g=f

_r 2

cos (_0 +

qbo

(7.79)

!
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Thus, as one would intuitively expect, a constant phase error does not

cause an inaccuracy in the magnitude of the cross-spectrum. The measured

co and quadspectra are:

cm(f) = Sx_(f ) cos _x_(f)
xy

Cxylf) LCOS@xy(f)_]

(7.80)

Qm(f)=xy Sx_(f) I sin (hx_(f)

= Q (f)
xy in qSxy (f) j

(7 81)

The inaccuracy in the cross-correlation function can be found by trans-

forming the cross spectrum. The transform must be divided into two parts

at f equal to zero since the constant phase error causes the phase factor

for positive frequencies to be translated in the opposite direction to the

phase factor for negative frequencies. This can be seen from the symmetry

properties of the cross spectrum. (See Reference 11}

c (_f)= c (f) (7.8z)
xy xy

Q (-f} = -Q (f) (7.83)
xy xy
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Sinc e

-1
d_(f) = tan

c (f)
xy

_bxy(- f) = _ _bxy(f)

Let the measured phase factor at positive frequencies be

_bx_(f) = _bxy{f) + _b0

Then the phase factor at negative frequencies is

_x_(f) : _xy(f) - _b0

and the cross-spectrum can be written

-j [_bxy(f)+_ O]
e f>O

- J [_xy {f) - %]

= ISxy(f)l e
; f<O
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(7.8s)

(7.86)

(7.87a)

(7.87b)



or

S m (f) = e
xy

-J _0
s (f) ; f > o

xy

J_o
= e S (f) ; f < 0

xy

The measured cross-correlation function is written as follows:

_,,0to ,00f_0Rm(T) = e Sxy(f ) e jZ1rfT df + e Sxy{f) e jZlrfT
xy oo

Let u = -f in the second integral and du = -df, then

-J_o f; ejZWfT J*of °R m (T) = e Sxy(f ) dt- e
xy co

s (-u) e
xy

-J_o f; ejZWfT J_bo f; xy(_U)= e Sxy(f ) df + e S

=A+A*

where A* = the complex conjugate of A.
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(7.88a)

(7.88b)

df

-jZnuv du

e - j zrru'r du



Therefore

Rmxy(T) = Z Re [e -jqb0 jfo Sxy(f) e jZlrfT df

Rx_('r } = 2Re _cos qb0- j

oo

sin_0)f0 [Cxy(f)- J Qxy(f)](c°s ZTrfT + j sin Z1rfT) dt t

= cos d_0 Rxy(T ) + Z sin _0 Cxy(f)

(7.89)

sin 2_rfT - Qxy(f) cos 21rfT] df

It can be seen that the constant phase error causes the measured cross-

correlation function to be equal to the true value multiplied by a cosine term

plus a bias error. Notice that this result is very similar to that in Eq. [7.7Z).

Fre____quency Dependent Phase Errors

A general expression can be obtained for the inaccuracies caused by

frequency dependent phase errors. For cross-spectral measurements

-j_0(f)

Sx_(f ) = Sxy(f ) e (7.90)

where dpo(f ) = the frequency dependent phase error.
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!
For the cross-correlation measurements

_='_' =fo%.,oj_,_oo . e-J%'f) dff°+ Sxy(f ) e j2_rf'r e -jqbO{f) df 1

_oo 1

Let u = -f, du = -df in the second integral

!

!

co _j¢o(f) f: -j%(-u)_Y fo e df- Sxy(-U) e-J2wuvR (f) = Sxy(f ) e jzn'fv e
du

!

!

,3o oo e- j[?-.'n'u'r-qbO(u) ] 1

=f0 Sxy(f) eJ[2wf'r-¢0(f)] df+f0 Sxy(-U) du

I

=A+A* l

/0 ° J[2_fT- dP0(f)] ]= 2 RE Sxy(f) e df
(7.91)

!
As an example, consider the case where the y(t) signal is passed

through an RC lowpass filter while the x(t) signal is not.

!

!

!
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xm(t) --x(t)

ym(t) = y(t) A(f) e-j_(f)

1
A(f) = (7.92)

"_I + (Z_rfRC) 2

-I
_0(f) = tan [ZvfRC] (7.93)

Fro_ Eq. (7.90) ,

l

Sm(T) ,_- S (f) e-jLtan-[ (z_f RC)]

xy xy
(7.94)

if f is restricted to a range where A(f) _- 1.

To compute the inaccuracy in the cross-correlation function, let A(f)

be restricted as follows.

l,0 > A(f) _> O. 98

From Eq. (7.9Z), we find the highest permissible frequency, fh'

0. Z

fh - ZIrRC
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and from Eq. (7.93), the maximum phase shift is found to be

Omax = ---O(fh) = -0.2

From Eq. (7.91),

The arc tan can be expanded as follows.

3 5 7
-I x x x

tan x = x ---_+ 5 7

and since for the highest frequency of operation

-1 (o.z) 3 (o.z) 5 (o. z) 7
tan (0. 2) = O. 2 3 + 5 7

_,_ O. 2

We can write

-I
-tan (27rfRC) _ -21rfRC
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Therefore,

R m('r) ,_ Z Re
xy Sxy(f)

R (T - RC)
xy

which is the same result as for a constant time delay type of phase error.

This is to be expected since the maximum frequency was restricted to a

range where 0(f) is linear.

Dynamic Phase Errors

The most severe dynamic phase errors in the measurement system

occur in the magnetic tape recording process. These errors are caused

by the nonuniform velocity of the tape and motion of one tape track relative

to another. Dynamic skew, differential flutter, and differential head stack

vibration are sources of this relative motion. (See Reference 39. ) This

error is commonly called dynamic Interchannel Time Delay Error (ITDE).

The measured values of x(t) and y(t) are

xm(t) : x[t + g(t)] (7.95)

ym(t) = y[t + h(t)] (7.96)
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The estimate of the measured cross-correlation function then becomes

lfTm x[t + g(t)] y[t + T + h{t + T)] dt
Rxy(') - ZT -T

(7.97)

Following the development for the effects of dynamic phase errors on auto-

correlation analyses, x[t + g{t)] and y[t + • + h{t + V)] are approximated

by the first two terms of a Taylor series.

x[t + g(t)] _ x(t) + g(t) _<(t)

y[t + T + h(t + T)] _ y(t + T) + h(t + T) _{t + T)

If_ T [x(t) + g(t) :}(t)] [y(t + T) + h(t + T) )(t + T)] dt
R_(') _" $g T

[x(t)] [y(t + T)] dt +
_-Tg T T

g(t) _(t) y(t + T) dt

If_ T if T+2T'- Th(t+ T) x(t) _r(t + T) dt +_ -T g{t) h(t + T) _{t) _(t + _) dt
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Since x(t) and y(t) are independent of g(t) and h(t), and all four are

stationary

E[ (T)] _ Rxy('r ) - Rxy('r) Rgh('r)
(7.98)

(As shown previously, the middle two terms vanish for the dynamic phase

error functions typical of magnetic tape recorders.) Thus, the measured

cross-correlation function is equal to the true cross-correlation function

plus a bias term. This bias term is the product of the second derivative of

the cross-correlation function of the data and the cross-correlation function

of the dynamic phase error signals.

The effect of these dynamic phase errors on cross-spectral density

analyses can be determined by taking the Fourier transform of the measured

cross - correlation function.

(3O

S_(f) = f_oo Rm('r) e-j2wfvd'rxy

_oo [Rxy (v) _ Rxy (T) Rg h(T) ]
Oo

e- j Z_fv dT

"f_ Rgh('r)Sxy(f ) R" (T) e- j Z_f'r dv
_ xy

(7. 99)
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I
This measured cross-spectrum is then equal to the true cross-spectrum |
plus abias error that also depends on the second derivative of the cross- m

correlation function of the data and the cross-correlation function of the I
m

dynamic phase errors.

7. 3 CORRECTIONS FOR FINITE SIZE TRANSDUCERS I

IN THE MEASUREMENT OF BOUNDARY LAYER
n

FLUC TUATIONS I
PRESSURE

Consider two transducers used to measure pressure as shown in

Figure 7- I. I

,
Transducer 1 _ _ I

" ............._ AZ I

,!
Transducer 2

Figure 7-1. Transducers I

x

position vectors of a point on the transducer surface

Y

I

I
I

172 I
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Let Kl(X ), Kz(y ) be the output voltage from the transducer due to a unit

point force applied at some point on the transducer surface. Then the total

output voltage due to some pressure field is

E l(t) = /A Pl (x,t) K 1 (x) dA 1
1

(7. IOOI

E2(t) = /A Pz(_Y't) K 2(y2 clA?.
Z

(7. 101)

Consider the cross-correlation of these two signals (or their cross power

spectrum)

)

R E Z(w) = <El(t ) E2(t + T)> (7. 102)

where < > means expected value

I'2(T) = lim I __TffpR E _ l(X,t) pZ(y, t + T) K l(x) Kz(y ) dA I dAT. dt
T--oo T

(7.1o3)

K(x) is determined experimentally or theoretically by determining the voltage

for a point force (a needle point) and normalizing it appropriately so that

K(x) dA = G, when G is the output for a uniform pressure.
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Only the pressure terms enter into the time averaging, so let us perform

that independently

<Pl (x,t) pz(_,t + 7) > = Rp(X, _,v)
(7. lo4)

This may be normalized by dividing by

cros s - cor r elation,

Cp(X, D -) :

(x) =

Z
P (Y) :

where

R (x, y, T)
p-_ _

mean square pressure at

mean square pressure at

to give the normalized

In a similar fashion the normalized cross-spectral density, Cp(X,_,c0)

given by

(7. lOS)

is

Sp(X,Z, _)
(x, y, co) = _ (7. 106)

-- [s(x,_(_ _]_
where

S (x,y,¢o)
p-.,-

Sp(X, to)

s (y, ¢o)
p--

= cross-spectral density of the pressure at xand y

= ordinary spectral density of the pressure at x

= ordinary spectral density of the pressure at

1,Z
The measured cross-spectral density, S (to) and cross-correlation

p,m

are given by

1,Z
R (T)
p,m

ff Kl(X) Kz(Y)
Sp,l'm2(¢o) = Sp(X,_.,-.Y'T) GZ -- dAl dAz

(7. lO7)
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R I ,
2

(T) :JJ Rp(X,Z, T) z
p,m G

KI_x_KzZI
dA I dA 2 (7. I08)

where G is the sensitivity of the transducer to a uniform pressure. For a

homogeneous pressure field, the cross-spectrum arLd cross-correlation is

dependent only upon the separation of the points. Because the object of the

measurement is to obtain an estimate of the correlation or spectrum at

some; point or points and not over some finite area, the measured function

is usually taken to be that at points x 0 andY0 {two points, perhaps the

centroids, of the respective areas. Considering only the cross-spectrum

now, the degradation due to a finite size transducer is

uJ SpLX0,_y0, GSp_0' 20' co) co) z
dA 1 dA Z (7. 109)

Equation (7. 109) may be evaluated analytically if the forms are known and

integrable; otherwise, it may be performed by numerical integration. The

degradation of resolution of the one point power spectrum is

Sp, m(co) [[_ K (x)K(y)
S (co) =jj P(_x'Y'co) Z dA 1 dA 2 (7. 110)
p "" G

where C (x,y, co) is the cross-spectrum normalized at the reference point x_,

and x and y are different positions on the same transducer face,
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Corcos (Reference 43) has evaluated Eq. (7. 110) for a specific boundary

layer cross-spectrum function C, and for round and square transducers of

uniform sensitivity (K = 1 over the area). Gilchrist and Strawderman

(Reference 44) followed this analysis with work which took into account the

variable sensitivity, but used a questionable approximation of the transducer

size. Willmarth and Roos (Reference 45) looked at the same problem in a

slightly different manner and obtained analytical results which showed Corcos

to be overly conservative, however they also used a uniformly sensitive

transducer.

Additional work by Chandiramani (Reference 46) has shown that the

correction is a function of both the wave number spectrum and the boundary

layer thickness. He examined several models of boundary layer turbulence

and determined a correction curve for each model. These are shown in

Figures 7-Z and 7-3. Note that Corcos t estimate of the correction appears

to be overly conservative in all cases. Furthermore, the correction factor

is dependent upon the ratio of transducer diameter to boundary layer thick-

ness, a smaller ratio giving less attenuation.

Because none of the models studied by the earlier investigators took

into account the variable sensitivity of the transducer element, all the cor-

rection estimates are conservative. To obtain a correction estimate which

takes into account this factor, an integration of Eq.i (7. 1 t0) was made with

the normalized cross-spectral density in the form of

-c1_- Xl-Yl _- xz-Yz -Jb-'- l-Y1
'_" c c c (7 Ill)
c (_,X,_) = eP
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and K(x) taken from the data of Reference 4Z. The sensitivity of this trans-

ducer is shown in Figure 7-4. The results are presented in Figure 7-5,

and show a large change from the prediction of Corcos. The effect of the

variable sensitivity is to make the effective size of the transducer smaller.

Thus, if the correction of Corcos had been applied to the data, the corrected

spectrum would be much too high at the high frequencies.

It is also evident from these curves that the correction factor is de-

pendent upon the boundary layer parameters. From these facts we can

conclude that the true correction factor for determining the power spectral

density of the pressure is dependent upon the cross-spectral density of the

pressure field and the sensitivity of the transducer. Unless both functions

are accurately and reliably known, any estimate is in error. Unfortunately,

the :present state-of-the-art does not include this knowledge. As a result,

all correction factors must be recognized as having some inherent and un-

known error.

Based upon all computations to date, the model of Corcos appears to

be the most conservative. Taking into account the transducer sensitivity

gives an improved but still conservative estimate. So long as r/6":' < 0.5,

where r is the transducer radius and 5 _" is the boundary layer displacement

thickness, this estimate appears'to be the most practical to use. Naturally,

as more experimental data becomes available and a better description of the

boundary layer is possible, an improved estimate can be formulated. Until

that time, the curve of Figure 7-5 should be used to correct the measured

pressure power spectrum.

An additional factor which must be accounted for is the change in

transducer sensitivity with frequency. As is shown in Figure 7-6, the sensi-

tivity across the face of a condenser microphone changes drastically with

frequency. While no measured data is available for other transducers, it

must be assumed that there is also some frequency dependence with them

also. These changes will be reflected by the characteristic curves of

Sp, m(eO}/Sp(CO) , which may move either up or down.
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7.4 M:AGNETIC TAPE RECORDER

DYNAMIC PHASE ERRORS

:Previous reports (References 39 and 47 throughS0)have considered the

errors introduced into correlation and spectral density measurements by non-

uniforn_ motion of the magnetic tape used to record the data. References 39

47, and 48 treat these errors from purely dimensional considerations.

Reference 47 is a general summary of timing errors while References 39

and 49 contain di,scussions of phase errors between tape tracks caused by

Interchannel Time Displacement Errors (ITDE). Reference 49 discusses

the er:cors introduced into ordinary spectral density and autocorrelation

functions from flutter of a single tape track. Examples are worked for both

a single sinusoid flutter component and a single band-limited white random

noise flutter component modulation of a single sinusoidal data signal. This

report attacks the flutter problem by examining a Bessel function expansion

of the frequency modulated data. (Flutter causes the frequency modulation.)

Reference 50 also considers the error introduced into ordinary spectral

density analyses by a single band-limited white noise flutter component

modulation of a single sinusoidal data component.

A new model for studying the errors introduced into both ordinary and

cross spectral and/or correlation measurements is presented in Section 7. Z

of this report. Because of the importance of the dynamic phase errors intro-

duced by recording the data on magnetic tape, this subsection examines the

problem in greater detail.

7.4. 1 Tape Motion Equations

Following a development similar to that used in Reference 4Z let an

arbitrary signal, x(t} be recorded on a magnetic tape moving at a velocity

v(t).
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vit) -- v 0[I + fit)] (7.llZ)

where

V 0 = the nominal recording velocity

fit) = the fractional flutter (an arbitrary function re-

stricted only to having a zero mean value)

The distance, S(T), that the tape moves in a time interval T can be de-

termined by integrating the velocity.

T
c-

SiT) = _ vit) dt

J0

T

= V O[T +/0 f(t) dt]
(7. 113)

Now the data can be expressed as a function of distance along the tape.

T

x(S) = x[V 0T + V 0 /0 f(t) dt]
(7. 114)

If the tape is reproduced at a constant velocity V 1 (playback flutter is assumed

equal to zero for simplicity), the output voltage is
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where

x(t') = xm(t)= x ,jot ]t + _1 f(u) du
(7. 115)

t' = machine time

xm(t) = the measured value on the output of the tape recorder at time t

If
V l = V 0 ,

¢-

= x It
xm(t) +

L t ]0 f(u) du

X[t+ g(t)]
(7.116)

where

g(t) = /0 t f(u) du (7. 117)

From Eq. (7. 116) it can be seen that the flutter causes a time varying phase

error in the reproduced version of the original data. That this error takes

the form of frequency modulation of the data can be seen from Eq. (7. 117).

When the data is recorded on the tape by means of FM electronics, there are

two additional flutter related errors that must be considered. These are a

noise term from frequency modulation of the carrier frequency and an ampli-

tude modulation of the data signaI. These two errors will not be considered

because (1) they can be eliminated by use of tape flutter compensation circuits

and (2) Reference 49 has shown that the magnitude of these errors are insig-

nificant for high quality instrumentation tape recorders even if flutter com-

pensation is not used.
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The development in Section 7. Z approximates the frequency modulated

data signal shown in Eq. (7. 116) by a two-term Taylor's series expansion.

For this approximation to be valid, the third and higher order terms of the

Taylor's series expansion must be negligible. The actual range over which

this approximation is useful is dependent on the magnitude of the flutter and

the frequency content of both the flutter and the data signal. In general, it

can be said that the approximation will not be valid for very high data fre-

quencies or for very low flutter frequencies. The two term approximation is

shown below.

x[ t + g(t)],_ x(t) + g(t) ;¢(t) (7.118)

For those cases where this approximation is valid, the autocorrelation func-

tion of the non-uniform tape velocity modulated data is shown in Eq. (7.55)

to be

where

Rm(T)-_- Rx(T)- R"(T)g (T) (7.I19)
x x g

Rm(_ -) = the autocorrelation function of the reproduced
x

data signal

R (v) = the autocorrelation function of the true data signal
x

R"(V)x = the second derivative, with respect to T, of Rx(T )

R (T) = the autocorrelation function of g(t)
g

By repeating the same development for a second data signal, y(t), recorded

on a second tape track one can show that
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ym(t) = y[t + h(t)] (7.1 zo)

Rm(T) _ R ('r)- R"(T)
Y Y Y Rh(T)

(7.iZl)

Rmxy(T) _ Rxy(T) - R"xy(T) Rgh(T ) (7.iz2)

where

ym(t) = the reproduced data signal

h(t) = the dynamic phase error in the second tape track

Rm(T) = the autocorrelation function of the reproduced version

Y of y(t)

R (T) = the autocorrelation function of y(t)
Y

R"(T) = the second derivative of R (T) with respect to W
Y Y

Rh(T ) = the autocorrelation function of h(t)

m

R_;.(T) = t:he cross-correlation function of the reproduced versions
My of x(t) and y(t)

Rxy(T ) = the cross-correlation function of x(t) and y(t)

R" (T) = the second derivative of R (T) with respect to T
xy xy

Rgh(T ) = the cross-correlation function of g(t) and h(t)

The cross-correlation function between the dynamic phase errors can be

further expanded as shown below:
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g(t) - h(t) = a(t) (7.123)

where

a(t) = the differential dynamic phase error between the two

tape tracks

Rgh(T) = Rh('r ) + R h('r)

where

(7.1 z4)

Rah(T) = the cross-correlation function between a(t) and h(t)

If the differential dynamic phase error is uncorrelated with the dynamic

phase error h(t), then the cross-correlation function Rgh(V) becomes

simply

Rgh(T) = Rh('r )

This fact is pointed out merely as a matter of interest. It is not known if

h(t) and a(t) are correlated, or not, in typical instrumentation recorders.

7.4. Z Analytical Examples

To examine the characteristics of the errors resulting in correlation

measurements from recording the data on magnetic tape, several examples

are worked assuming specific forms for both the flutter and the data.

Errors in the ordinary spectral density and cross-spectral density measure-

ments are not discussed since these can be established from the difference
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between the Fourier transforms of the correlation functions of the actual data

and tThe reproduced data. Also, since Eqs. (7. 119) and {7. 12Z) are of the same

form, only the autocorrelation function computation errors will be explored.

Eq. (7. 119) can be rewritten as

As long as the assumption in Eq. (7. 118) is applicable, the error term in

Eq. {7. 125) carl be split into two terms. The first term, R"{'r)/R {T), is
X X

related to the data only and the second term, R {T), is related to the dynamic
g

phase error only. The total error is of course the product of these two

temps. The individual effects of these two terms will be examined separately.

First, consider the data related term R"(T)/R (T). If the data is
X X

sinusoidal where x(t) = A sin colt

Z
A

Rx(T) = T cos col T

A 2 2

R"(T) = -_ colx Z cos col v

Hence,

R"(T)
x Z

R (T)"= - col
X

for sinusoidal data (7.iz6)

189



I
I

Thus the contribution of the data related term to the error in the correlation

function increases with the square of the data frequency. This error is

plotted in Figure 7-7.

I

I
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0 25 50 75 I00

I

I
Figure 7-7. Data Related Phase Error Term for Sinusoidal Data I
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If the data consists of white Gaussian random noise passed through

an ideal lowpass filter (see Figure 7-8), it can be shown that the data re-

lated[ error term is

R"(T) 2¢o I cot COlTX 2 Z

R (T)--¢°I - T +--Z
x T

(7.127)

where e I = the upper cutoff frequency of the lowpass filter. This error is

plotted in Figure 7-9_ for e I = 100.

T Aj!fl

G (f)
x

Frequency _---

fl

Figure 7-8. Spectral Density of Ideally Low Passed White

Gaussian Noise
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For this case, the dependency on the square of the upper frequency

has been modified by two additive terms. The first of these two terms

(2_01 cot _01T/T) tends to increase with the upper data frequency for a given

time delay and tends to decrease with increasing time delay for a given

cutoff frequency. The cotangent portion of this term reflects the particular

normalization used. Since R (T) passes through zero at intervals of _01T = w,x

any error causes the normalized error to become infinite at intervals of _01T = w.

The second of the additive terms (2/_ -2) decreases with the square of the

increasing time delay.

If the spectral density of the data has the shape of the positive half of a

Gaussian probability density function starting at f = 0 (see Figure 7-10),

the data related error term can be shown to be

Rx(_1_ _-_ l-im-nlj
for low passed Gaussian shaped

spectral density

(7. 128)

where toI = the half power frequency.

T
Gx(f)

I

fl

frequency

Figure 7-10. Gaussian Shaped Spectral Density
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For this case, the dependency on the square of the cutoff frequency has a

scale factor and one additive term {colT/2. . This additive

term increases as the square of the colV product. However, since it is

opposite in sign to the constant term, the total error will decrease to zero

at ¢01 v = 2.4 and from that point on increase, with opposite sign.

Now consider the portion of the error term related to the tape speed

non-uniformities, Rh(T ). This term is of major concern since it is de-

scriptive of the error from the tape recorder. If this error can be made

stoat1 enough, the total errors will be insignificant. Not much is known

about the actual characteristics of the tape velocity non-uniformities. Since

the tape is driven by rotary mechanisms, it is logical to assume that the

flutter will contain some periodic components related to the rotational fre-

quencies.

If it is assumed that the flutter is a single sinusoidal component, the

phase error can be found from Eq. (7. 117).

t t

g(t) =fO f(u) du = f0 B cos ¢0gu dd

B

- sin ¢o2t
coZ

cos _2v
{7.Izg)

Thi,_ error is plotted in Figure 7-12. Equation (7. 129) shows one very im-

portant fact. The higher the flutter frequency, ¢o2, the lower will be the

resulting error. In fact, the error term decreases with the square of the

flutter frequency. This indicates that tape recorders having low mass,
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rapid response tape speed servo systems are preferable for correlation

measurements because they filter out higher flutter frequencies than

standard high mass tape drive systems.

If the flutter is random with a bandpass Gaussian white noise spectrum

as shown in Figure 7-13,

Gf(f"_l

B 2

f2 f3

Frequency

Fig are 7-13. Ideal Bandpassed White Gaussian Flutter Spectrum

The dynamic phase error spectrum is as shown in Figure 7-14.

197



!

G (f)
g

2
B

!

!

!
1

f2 f3 I

Frequency

Figure 7-14. Dynamic Phase Error Spectrum Corresponding to Ideal

Bandpassed Flutter Spectrum

Since g(t) =ff(t)dt , G (f)=g Gf(f)
tJ0

= ; f2 < f < f3
g ¢0 3 - f2

= 0 elsewhere

The autocorrelation function of g(t) can be found by taking the cosine

transform of G (f).
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R

co

Rg(T) = f0 Gg(f} cos 27rfT df

ff3 32 cos 21rfT
df

[{1f3 - f2 Y_ f3 + f2 - 2:rT i

l]
(2_rf3T) - Si (2TrfzT)J]

(7. 130)

where Si (c0v) = the sine integral.

In a recorder suitable for recording high frequency acoustic data, one

would expect f3 to be 10 KHz or greater and f2 to be less than 100 Hz.

Under these conditions Eq. (7. 130) can be approximated by

Si (2TrfzT)ll
(7.130)

This equation is plotted in Figure 7-15 as a function of T for f2 = I0 Hz.

The higher f2' the more rapidly as a function of T, the oscillations decay .

This. also indicates that the flutter components should be filtered out to as

high a frequency as is possible to perform accurate correlation analyses.

To estimate the total error term one can graphically multiply the appropriate

data related error term and flutter related term.
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